999 resultados para decay resistance
Resumo:
The first observation of the elusive Fe4+ charge state coming from the nuclear decay of 57Co3+ has been found in the Mössbauer emission spectra of 57Co:La2Li0.5Co0.5O4. A Ti-doped sample was prepared in order to show that the Fe4+ fraction can be conveniently monitored. Both results were predicted on the basis of the electronic energy-band scheme of these oxides.
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.
Resumo:
Soil quality indicators such as penetration resistance (PR) and bulk density (BD) are traditionally determined in a single undisturbed soil sample. The aim of this study was to assess the effect of PR measurements of undisturbed samples on the determination of BD in the same sample of two soils differing in clay contents. To this end, samples were collected from the 0.00-0.10 and 0.10-0.20 m layers of two soils of clayey and very clayey texture. Volumetric rings were used to collect a total of 120 undisturbed soil samples from each soil layer that were divided into two subsets containing 60 units each. One sample set, designated “perforated samples”, was used to determine PR and BD in the same undisturbed sample; the other, named “intact samples”, was used to determine BD only. Bulk density values for perforated and intact samples were compared by analysis of variance, using a completely randomized experimental design. Means were compared by the t-test at 5 %. The BD values for the clayey soil were similar in perforated and intact samples from the two layers. However, BD of the very clayey soil was lower in the perforated than in the intact samples at both depths. Therefore, PR and BD in clayey soils can be accurately determined in the same undisturbed sample whereas in very clayey soils, different samples are required for this purpose.
Resumo:
Mitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur in Candida glabrata. Cells with mitochondrial DNA deficiency (so-called "petite mutants") upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of such C. glabrata mutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and related C. glabrata isolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genes C. glabrata CDR1 (CgCDR1), CgCDR2, and CgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even with in vitro growth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays during in vitro growth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selected in vivo under azole therapy, even if strongly affecting in vitro growth characteristics, can confer a selective advantage under host conditions, allowing the C. glabrata mutant to be more virulent than wild-type isolates.
Resumo:
Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.
Resumo:
Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O⁶-methylguanine-DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O⁶-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG), which repairs the cytotoxic lesions N³-methyladenine and N⁷-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.
Resumo:
OBJECTIVES: The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) at high bacterial densities. The effect of three inoculum sizes on the selection of resistance to vancomycin, daptomycin, and linezolid was investigated in methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Low (10(4) CFU/ml), medium (10(6) CFU/ml), and high (10(8) CFU/ml) inocula of MRSA were exposed to twofold increasing concentrations of either drug during 15 days of cycling. MICs for low (MICL), medium (MICM), and high (MICH) inocula were determined daily. Conventional MICs were measured at days 1, 5, 10, and 15. Experiments were performed in triplicate. RESULTS: At the beginning of the experiment a small IE was observed for vancomycin (MICL=1 μg/ml, MICM=1-2 μg/ml, and MICH=2 μg/ml) and a significant IE for daptomycin (MICL=0.25 μg/ml, MICM=0.25-0.5 μg/ml, and MICH=2 μg/ml). Linezolid exhibited no IE at low and medium inocula (MICL=1 μg/ml and MICM=1-2 μg/ml), but with the high inoculum, concentrations up to 2,048 μg/ml did not fully inhibit visual growth. During cycling, increase of MIC was observed for all antibiotics. At day 15, MICL, MICM, and MICH of vancomycin were 2-4, 4-8, and 4-16 μg/ml and of daptomycin were 0.5-2, 8-128, and 64-256 μg/ml, respectively. MICL and MICM of linezolid were 1 and 2-4 μg/ml, respectively. Conventional MICs showed vancomycin and daptomycin selection of resistance since day 5 depending on the inocula. No selection of linezolid resistance was observed. CONCLUSIONS: Our results showed the importance of the inoculum size in the development of resistance. Measures aimed at lowering the inoculum at the site of infection should be used whenever possible in parallel to antimicrobial therapy.
Resumo:
Introduction : La prévalence des maladies stéatosiques non alcooliques du foie augmente de manière exponentielle dans les pays industrialisés. Le développement de ces maladies se traduit par une stéatose hépatique fréquemment associée à une résistance à l'insuline. Cette résistance a pu être expliquée par l'accumulation intra-hépatocytaire de lipides intermédiaires tels que Céramides et Diacylglycérols. Cependant, notre modèle animal de stéatose hépatique, les souris invalidées pour la protéine hépatique « Microsomal Triglyceride Transfert Protein » (Mttp Δ / Δ), ne développent pas de résistance à l'insuline, malgré une augmentation de ces lipides intermédiaires. Ceci suggère la présence d'un autre mécanisme induisant la résistance à l'insuline. Matériels et méthodes : L'analyse Microarray du foie des souris Mttp Δ / Δ a montré une forte up-régulation des gènes « Cell-death Inducing DFFA-like Effector C (cidec) », « Lipid Storage Droplet Protein 5 (lsdp5) » et « Bernardinelli-Seip Congenital Lipodystrophy 2 Homolog (seipin) » dans le foie des souris Mttp Δ / Δ. Ces gènes ont été récemment identifiés comme codant pour des protéines structurelles des gouttelettes lipidiques. Nous avons testé si ces gènes jouaient un rôle important dans le développement de la stéatose hépatique, ainsi que de la résistance à l'insuline. Résultats : Nous avons démontré que ces gènes sont fortement augmentés dans d'autres modèles de souris stéatosées tels que ceux présentant une sur-expression de ChREBP. Dans les hépatocytes murins (AML12 :Alfa Mouse Liver 12), l'invalidation de cidec et/ou seipin semble diminuer la phosphorylation d'AKT après stimulation à l'insuline, suggérant une résistance à l'insuline. Chez l'homme, l'expression de ces gènes est augmentée dans le foie de patients obèses avec stéatose hépatique. De manière intéressante, cette augmentation est atténuée chez les patients avec résistance à l'insuline. Conclusion : Ces données suggèrent que ces protéines des gouttelettes lipidiques augmentent au cours du développement de la stéatose hépatique et que cette augmentation protège contre la résistance à l'insuline.
Resumo:
BACKGROUND: The continuous spread of penicillin-resistant pneumococci represents a permanent threat in the treatment of pneumococcal infections, especially when strains show additional resistance to quinolones. The main objective of this study was to determine a treatment modality impeding the emergence of quinolone resistance. RESULTS: Exposure of a penicillin-resistant pneumococcus to increasing concentrations of trovafloxacin or ciprofloxacin selected for mutants resistant to these drugs. In the presence of sub-inhibitory concentrations of vancomycin, development of trovafloxacin-resistance and high-level ciprofloxacin-resistance were prevented. CONCLUSIONS: Considering the risk of quinolone-resistance in pneumococci, the observation might be of clinical importance.
Resumo:
Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, ß-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to ß-lactam antibiotics is conferred by ß-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to ß-lactam antibiotics, namely two ß-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.