926 resultados para cognitive models
Resumo:
This study used data from Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) to investigate how parent report of children’s emotional and cognitive regulation at age 2-3 years was associated with teacher ratings of children’s prosocial behaviors in the early years of school. A sample of 2,392 children was drawn from the LSAC Birth Cohort for the analyses. The analyses used structural equation modeling to estimate parameters of the relationships between key variables. Within the model, estimates of mother-reported emotional and cognitive regulation at age 2 to 3 years were significantly associated with teacher-reported prosocial behavior at 6 to 7 years. Emotional regulation was a slightly stronger indicator of prosocial behavior than cognitive regulation. Being female and from a family with a higher socioeconomic position were also associated with higher levels of prosocial behavior. Results are discussed in relation to the role of early childhood teachers in fostering children’s self-regulatory behaviors and in providing environments in which empathic and prosocial behaviors are modeled, guided, and scaffolded so that foundations are laid for caring behaviors to be understood and internalized by children.
Resumo:
Process-aware information systems (PAISs) can be configured using a reference process model, which is typically obtained via expert interviews. Over time, however, contextual factors and system requirements may cause the operational process to start deviating from this reference model. While a reference model should ideally be updated to remain aligned with such changes, this is a costly and often neglected activity. We present a new process mining technique that automatically improves the reference model on the basis of the observed behavior as recorded in the event logs of a PAIS. We discuss how to balance the four basic quality dimensions for process mining (fitness, precision, simplicity and generalization) and a new dimension, namely the structural similarity between the reference model and the discovered model. We demonstrate the applicability of this technique using a real-life scenario from a Dutch municipality.
Resumo:
Background: Medication remains the cornerstone treatment for mental illness. Cognition is one of the strongest predictors of non-adherence. The aim of this preliminary investigation was to examine the association between the Large Allen Cognitive Level Screen (LACLS) and medication adherence among a small sample of mental health service users to determine whether the LACLS has potential as a screening tool for capacity to manage medication regimens. Method: Demographic and clinical information was collected from a small sample of people who had recently accessed community mental health services. Participants then completed the LACLS and the Medication Adherence Rating Scale (MARS) at a single time point. The strength of association between the LACLS and MARS was examined using Spearman rank-order correlation. Results: A strong positive correlation between the LACLS and medication adherence (r = 0.71, p = 0.01) was evident. No participants reported the use of medication aids despite evidence of impaired cognitive functioning. Conclusion: This investigation has provided the first empirical evidence indicating that the LACLS may have utility as a screening instrument for capacity to manage medication adherence among this population. While promising, this finding should be interpreted with caveats given its preliminary nature.
Resumo:
The article focuses on how the information seeker makes decisions about relevance. It will employ a novel decision theory based on quantum probabilities. This direction derives from mounting research within the field of cognitive science showing that decision theory based on quantum probabilities is superior to modelling human judgements than standard probability models [2, 1]. By quantum probabilities, we mean decision event space is modelled as vector space rather than the usual Boolean algebra of sets. In this way,incompatible perspectives around a decision can be modelled leading to an interference term which modifies the law of total probability. The interference term is crucial in modifying the probability judgements made by current probabilistic systems so they align better with human judgement. The goal of this article is thus to model the information seeker user as a decision maker. For this purpose, signal detection models will be sketched which are in principle applicable in a wide variety of information seeking scenarios.
Resumo:
This presentation discusses topics and issues that connect closely with the Conference Themes and themes in the ARACY Report Card. For example, developing models of public space that are safe, welcoming and relevant to children and young people will impact on their overall wellbeing and may help to prevent many of the tensions occurring in Australia and elsewhere around the world. This area is the subject of ongoing international debate, research and policy formation, relevant to concerns in the ARACY Report Card about children and young people’s health and safety, participation, behaviours and risks and peer and family relationships.
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
The existing literature shows driving speed significantly affects levels of safety, emissions, and stress in driving. In addition, drivers who feel tense when driving have been found to drive more slowly than others. These findings were mostly obtained from crash data analyses or field studies, and less is known regarding driver perceptions of the extent to which reducing their driving speed would improve road safety, reduce their car’s emissions, and reduce stress and road rage. This paper uses ordered probit regression models to analyse responses from 3538 Queensland drivers who completed an online RACQ survey. Drivers most strongly agreed that reducing their driving speed would improve road safety, less strongly agreed that reducing their driving speed would reduce their car’s emissions and least strongly agreed that reducing their driving speed would reduce stress and road rage. Younger drivers less strongly agreed that these benefits would occur than older drivers. Drivers of automatic cars and those who are bicycle commuters agreed more to these benefits than other drivers. Female drivers agreed more strongly than males on improving safety and reducing stress and road rage. Type of fuel used, engine size, driving experience, and distance driven per week were also found to be associated with driver perceptions, although these were not found to be significant in all of the regression models. The findings from this study may help in developing targeted training or educational measures to improve drivers’ willingness to reduce their driving speed.
Resumo:
Emergency service workers (e.g., fire-fighters, police and paramedics) are exposed to elevated levels of potentially traumatising events through the course of their work. Such exposure can have lasting negative consequences (e. g., Post Traumatic Stress Disorder; PTSD) and/or positive outcomes (e. g., Posttraumatic Growth; PTG). Research had implicated trauma, occupational and personal variables that account for variance in post-trauma outcomes yet at this stage no research has investigated these factors and their relative influence on both PTSD and PTG in a single study. Based in Calhoun and Tedeschi’s (2013) model of PTG and previous research, in this study regression models of PTG and PTSD symptoms among 218 fire-fighters were tested. Results indicated organisational factors predicted symptoms of PTSD, while there was partial support for the hypothesis that coping and social support would be predictors of PTG. Experiencing multiple sources of trauma, higher levels of organisational and operational stress, and utilising cognitive reappraisal coping, were all significant predictors of PTSD symptoms. Increases in PTG were predicted by experiencing trauma from multiple sources and the use of self-care coping. Results highlight the importance of organisational factors in the development of PTSD symptoms, and of individual factors for promoting PTG.
Resumo:
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Resumo:
Business models to date have remained the creation of management, however, it is the belief of the authors that designers should be critically approaching, challenging and creating new business models as part of their practice. This belief portrays a new era where business model constructs become the new design brief of the future and fuel design and innovation to work together at the strategic level of an organisation. Innovation can no longer rely on technology and R&D alone but must incorporate business models. Business model innovation has become a strong type of competitive advantage. As firms choose not to compete only on price, but through the delivery of a unique value proposition in order to engage with customers and to differentiate a company within a competitive market. The purpose of this paper is to explore and investigate business model design through various product and/or service deliveries, and identify common drivers that are catalysts for business model innovation. Fifty companies spanning a diverse range of criteria were chosen, to evaluate and compare commonalities and differences in the design of their business models. The analysis of these business cases uncovered commonalities of the key strategic drivers behind these innovative business models. Five Meta Models were derived from this content analysis: Customer Led, Cost Driven, Resource Led, Partnership Led and Price Led. These five key foci provide a designer with a focus from which quick prototypes of new business models are created. Implications from this research suggest there is no ‘one right’ model, but rather through experimentation, the generation of many unique and diverse concepts can result in greater possibilities for future innovation and sustained competitive advantage.
Resumo:
Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders’ performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future ‘drink riding’ policy considerations are discussed.
Resumo:
This dissertation seeks to define and classify potential forms of Nonlinear structure and explore the possibilities they afford for the creation of new musical works. It provides the first comprehensive framework for the discussion of Nonlinear structure in musical works and provides a detailed overview of the rise of nonlinearity in music during the 20th century. Nonlinear events are shown to emerge through significant parametrical discontinuity at the boundaries between regions of relatively strong internal cohesion. The dissertation situates Nonlinear structures in relation to linear structures and unstructured sonic phenomena and provides a means of evaluating Nonlinearity in a musical structure through the consideration of the degree to which the structure is integrated, contingent, compressible and determinate as a whole. It is proposed that Nonlinearity can be classified as a three dimensional space described by three continuums: the temporal continuum, encompassing sequential and multilinear forms of organization, the narrative continuum encompassing processual, game structure and developmental narrative forms and the referential continuum encompassing stylistic allusion, adaptation and quotation. The use of spectrograms of recorded musical works is proposed as a means of evaluating Nonlinearity in a musical work through the visual representation of parametrical divergence in pitch, duration, timbre and dynamic over time. Spectral and structural analysis of repertoire works is undertaken as part of an exploration of musical nonlinearity and the compositional and performative features that characterize it. The contribution of cultural, ideological, scientific and technological shifts to the emergence of Nonlinearity in music is discussed and a range of compositional factors that contributed to the emergence of musical Nonlinearity is examined. The evolution of notational innovations from the mobile score to the screen score is plotted and a novel framework for the discussion of these forms of musical transmission is proposed. A computer coordinated performative model is discussed, in which a computer synchronises screening of notational information, provides temporal coordination of the performers through click-tracks or similar methods and synchronises the audio processing and synthesized elements of the work. It is proposed that such a model constitutes a highly effective means of realizing complex Nonlinear structures. A creative folio comprising 29 original works that explore nonlinearity is presented, discussed and categorised utilising the proposed classifications. Spectrograms of these works are employed where appropriate to illustrate the instantiation of parametrically divergent substructures and examples of structural openness through multiple versioning.
Resumo:
Collisions between distinct road users (e.g. drivers and riders, drivers and cyclists) make a substantial contribution to the road trauma burden. Although evidence suggests different road users interpret the same road situations contrarily, it is not clear how their situation awareness differs, nor is it clear which differences might lead to conflicts. This article presents the findings from an on-road study which was conducted to examine driver, cyclist and motorcyclist situation awareness in different road environments. The findings suggest that drivers, motorcyclists, and cyclists develop markedly different situational understandings even when operating in the same road environments. Examination of these differences indicate that they are likely to be compatible along arterial roads, shopping strips and at roundabouts, but that they may create conflicts between the different road users at intersections. The key role of road design in supporting compatible situation awareness and behaviour across different road users is discussed.
Resumo:
Parallel interleaved converters are finding more applications everyday, for example they are frequently used for VRMs on PC main boards mainly to obtain better transient response. Parallel interleaved converters can have their inductances uncoupled, directly coupled or inversely coupled, all of which have different applications with associated advantages and disadvantages. Coupled systems offer more control over converter features, such as ripple currents, inductance volume and transient response. To be able to gain an intuitive understanding of which type of parallel interleaved converter, what amount of coupling, what number of levels and how much inductance should be used for different applications a simple equivalent model is needed. As all phases of an interleaved converter are supposed to be identical, the equivalent model is nothing more than a separate inductance which is common to all phases. Without utilising this simplification the design of a coupled system is quite daunting. Being able to design a coupled system involves solving and understanding the RMS currents of the input, individual phase (or cell) and output. A procedure using this equivalent model and a small amount of modulo arithmetic is detailed.