977 resultados para chaotic dynamical systems
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
Recent numerical experiments have demonstrated that the state of the stratosphere has a dynamical impact on the state of the troposphere. To account for such an effect, a number of mechanisms have been proposed in the literature, all of which amount to a large-scale adjustment of the troposphere to potential vorticity (PV) anomalies in the stratosphere. This paper analyses whether a simple PV adjustment suffices to explain the actual dynamical response of the troposphere to the state of the stratosphere, the actual response being determined by ensembles of numerical experiments run with an atmospheric general-circulation model. For this purpose, a new PV inverter is developed. It is shown that the simple PV adjustment hypothesis is inadequate. PV anomalies in the stratosphere induce, by inversion, flow anomalies in the troposphere that do not coincide spatially with the tropospheric changes determined by the numerical experiments. Moreover, the tropospheric anomalies induced by PV inversion are on a larger scale than the changes found in the numerical experiments, which are linked to the Atlantic and Pacific storm-tracks. These findings imply that the impact of the stratospheric state on the troposphere is manifested through the impact on individual synoptic-scale systems and their self-organization in the storm-tracks. Changes in these weather systems in the troposphere are not merely synoptic-scale noise on a larger scale tropospheric response, but an integral part of the mechanism by which the state of the stratosphere impacts that of the troposphere.
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.
Resumo:
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Resumo:
We study systems with periodically oscillating parameters that can give way to complex periodic or nonperiodic orbits. Performing the long time limit, we can define ergodic averages such as Lyapunov exponents, where a negative maximal Lyapunov exponent corresponds to a stable periodic orbit. By this, extremely complicated periodic orbits composed of contracting and expanding phases appear in a natural way. Employing the technique of ϵ-uncertain points, we find that values of the control parameters supporting such periodic motion are densely embedded in a set of values for which the motion is chaotic. When a tiny amount of noise is coupled to the system, dynamics with positive and with negative nontrivial Lyapunov exponents are indistinguishable. We discuss two physical systems, an oscillatory flow inside a duct and a dripping faucet with variable water supply, where such a mechanism seems to be responsible for a complicated alternation of laminar and turbulent phases.
Resumo:
Rhythms are manifested ubiquitously in dynamical biological processes. These fundamental processes which are necessary for the survival of living organisms include metabolism, breathing, heart beat, and, above all, the circadian rhythm coupled to the diurnal cycle. Thus, in mathematical biology, biological processes are often represented as linear or nonlinear oscillators. In the framework of nonlinear and dissipative systems (ie. the flow of energy, substances, or sensory information), they generate stable internal oscillations as a response to environmental input and, in turn, utilise such output as a means of coupling with the environment.
Resumo:
In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.
Resumo:
The first multi-model study to estimate the predictability of a boreal Sudden Stratospheric Warming (SSW) is performed using five NWP systems. During the 2012-2013 boreal winter, anomalous upward propagating planetary wave activity was observed towards the end of December, which followed by a rapid deceleration of the westerly circulation around 2 January 2013, and on 7 January 2013 the zonal mean zonal wind at 60°N and 10 hPa reversed to easterly. This stratospheric dynamical activity was followed by an equatorward shift of the tropospheric jet stream and by a high pressure anomaly over the North Atlantic, which resulted in severe cold conditions in the UK and Northern Europe. In most of the five models, the SSW event was predicted 10 days in advance. However, only some ensemble members in most of the models predicted weakening of westerly wind when the models were initialized 15 days in advance of the SSW. Further dynamical analysis of the SSW shows that this event was characterized by the anomalous planetary wave-1 amplification followed by the anomalous wave-2 amplification in the stratosphere, which resulted in a split vortex occurring between 6 January 2013 and 8 January 2013. The models have some success in reproducing wave-1 activity when initialized 15 days in advance, they but generally failed to produce the wave-2 activity during the final days of the event. Detailed analysis shows that models have reasonably good skill in forecasting tropospheric blocking features that stimulate wave-2 amplification in the troposphere, but they have limited skill in reproducing wave-2 amplification in the stratosphere.
Resumo:
Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.
Resumo:
The theory of diffusion in many-dimensional Hamiltonian system is applied to asteroidal dynamics. The general formulation developed by Chirikov is applied to the NesvornA1/2-Morbidelli analytic model of three-body (three-orbit) mean-motion resonances (Jupiter-Saturn-asteroid). In particular, we investigate the diffusion along and across the separatrices of the (5, -2, -2) resonance of the (490) Veritas asteroidal family and their relationship to diffusion in semi-major axis and eccentricity. The estimations of diffusion were obtained using the Melnikov integral, a Hadjidemetriou-type sympletic map and numerical integrations for times up to 10(8) years.
Resumo:
Process scheduling techniques consider the current load situation to allocate computing resources. Those techniques make approximations such as the average of communication, processing, and memory access to improve the process scheduling, although processes may present different behaviors during their whole execution. They may start with high communication requirements and later just processing. By discovering how processes behave over time, we believe it is possible to improve the resource allocation. This has motivated this paper which adopts chaos theory concepts and nonlinear prediction techniques in order to model and predict process behavior. Results confirm the radial basis function technique which presents good predictions and also low processing demands show what is essential in a real distributed environment.