885 resultados para autonomous intelligent systems
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
Las Field-Programmable Gate Arrays (FPGAs) SRAM se construyen sobre una memoria de configuración de tecnología RAM Estática (SRAM). Presentan múltiples características que las hacen muy interesantes para diseñar sistemas empotrados complejos. En primer lugar presentan un coste no-recurrente de ingeniería (NRE) bajo, ya que los elementos lógicos y de enrutado están pre-implementados (el diseño de usuario define su conexionado). También, a diferencia de otras tecnologías de FPGA, pueden ser reconfiguradas (incluso en campo) un número ilimitado de veces. Es más, las FPGAs SRAM de Xilinx soportan Reconfiguración Parcial Dinámica (DPR), la cual permite reconfigurar la FPGA sin interrumpir la aplicación. Finalmente, presentan una alta densidad de lógica, una alta capacidad de procesamiento y un rico juego de macro-bloques. Sin embargo, un inconveniente de esta tecnología es su susceptibilidad a la radiación ionizante, la cual aumenta con el grado de integración (geometrías más pequeñas, menores tensiones y mayores frecuencias). Esta es una precupación de primer nivel para aplicaciones en entornos altamente radiativos y con requisitos de alta confiabilidad. Este fenómeno conlleva una degradación a largo plazo y también puede inducir fallos instantáneos, los cuales pueden ser reversibles o producir daños irreversibles. En las FPGAs SRAM, los fallos inducidos por radiación pueden aparecer en en dos capas de arquitectura diferentes, que están físicamente superpuestas en el dado de silicio. La Capa de Aplicación (o A-Layer) contiene el hardware definido por el usuario, y la Capa de Configuración contiene la memoria de configuración y la circuitería de soporte. Los fallos en cualquiera de estas capas pueden hacer fracasar el sistema, lo cual puede ser ás o menos tolerable dependiendo de los requisitos de confiabilidad del sistema. En el caso general, estos fallos deben gestionados de alguna manera. Esta tesis trata sobre la gestión de fallos en FPGAs SRAM a nivel de sistema, en el contexto de sistemas empotrados autónomos y confiables operando en un entorno radiativo. La tesis se centra principalmente en aplicaciones espaciales, pero los mismos principios pueden aplicarse a aplicaciones terrenas. Las principales diferencias entre ambas son el nivel de radiación y la posibilidad de mantenimiento. Las diferentes técnicas para la gestión de fallos en A-Layer y C-Layer son clasificados, y sus implicaciones en la confiabilidad del sistema son analizados. Se proponen varias arquitecturas tanto para Gestores de Fallos de una capa como de doble-capa. Para estos últimos se propone una arquitectura novedosa, flexible y versátil. Gestiona las dos capas concurrentemente de manera coordinada, y permite equilibrar el nivel de redundancia y la confiabilidad. Con el objeto de validar técnicas de gestión de fallos dinámicas, se desarrollan dos diferentes soluciones. La primera es un entorno de simulación para Gestores de Fallos de C-Layer, basado en SystemC como lenguaje de modelado y como simulador basado en eventos. Este entorno y su metodología asociada permite explorar el espacio de diseño del Gestor de Fallos, desacoplando su diseño del desarrollo de la FPGA objetivo. El entorno incluye modelos tanto para la C-Layer de la FPGA como para el Gestor de Fallos, los cuales pueden interactuar a diferentes niveles de abstracción (a nivel de configuration frames y a nivel físico JTAG o SelectMAP). El entorno es configurable, escalable y versátil, e incluye capacidades de inyección de fallos. Los resultados de simulación para algunos escenarios son presentados y comentados. La segunda es una plataforma de validación para Gestores de Fallos de FPGAs Xilinx Virtex. La plataforma hardware aloja tres Módulos de FPGA Xilinx Virtex-4 FX12 y dos Módulos de Unidad de Microcontrolador (MCUs) de 32-bits de propósito general. Los Módulos MCU permiten prototipar Gestores de Fallos de C-Layer y A-Layer basados en software. Cada Módulo FPGA implementa un enlace de A-Layer Ethernet (a través de un switch Ethernet) con uno de los Módulos MCU, y un enlace de C-Layer JTAG con el otro. Además, ambos Módulos MCU intercambian comandos y datos a través de un enlace interno tipo UART. Al igual que para el entorno de simulación, se incluyen capacidades de inyección de fallos. Los resultados de pruebas para algunos escenarios son también presentados y comentados. En resumen, esta tesis cubre el proceso completo desde la descripción de los fallos FPGAs SRAM inducidos por radiación, pasando por la identificación y clasificación de técnicas de gestión de fallos, y por la propuesta de arquitecturas de Gestores de Fallos, para finalmente validarlas por simulación y pruebas. El trabajo futuro está relacionado sobre todo con la implementación de Gestores de Fallos de Sistema endurecidos para radiación. ABSTRACT SRAM-based Field-Programmable Gate Arrays (FPGAs) are built on Static RAM (SRAM) technology configuration memory. They present a number of features that make them very convenient for building complex embedded systems. First of all, they benefit from low Non-Recurrent Engineering (NRE) costs, as the logic and routing elements are pre-implemented (user design defines their connection). Also, as opposed to other FPGA technologies, they can be reconfigured (even in the field) an unlimited number of times. Moreover, Xilinx SRAM-based FPGAs feature Dynamic Partial Reconfiguration (DPR), which allows to partially reconfigure the FPGA without disrupting de application. Finally, they feature a high logic density, high processing capability and a rich set of hard macros. However, one limitation of this technology is its susceptibility to ionizing radiation, which increases with technology scaling (smaller geometries, lower voltages and higher frequencies). This is a first order concern for applications in harsh radiation environments and requiring high dependability. Ionizing radiation leads to long term degradation as well as instantaneous faults, which can in turn be reversible or produce irreversible damage. In SRAM-based FPGAs, radiation-induced faults can appear at two architectural layers, which are physically overlaid on the silicon die. The Application Layer (or A-Layer) contains the user-defined hardware, and the Configuration Layer (or C-Layer) contains the (volatile) configuration memory and its support circuitry. Faults at either layers can imply a system failure, which may be more ore less tolerated depending on the dependability requirements. In the general case, such faults must be managed in some way. This thesis is about managing SRAM-based FPGA faults at system level, in the context of autonomous and dependable embedded systems operating in a radiative environment. The focus is mainly on space applications, but the same principles can be applied to ground applications. The main differences between them are the radiation level and the possibility for maintenance. The different techniques for A-Layer and C-Layer fault management are classified and their implications in system dependability are assessed. Several architectures are proposed, both for single-layer and dual-layer Fault Managers. For the latter, a novel, flexible and versatile architecture is proposed. It manages both layers concurrently in a coordinated way, and allows balancing redundancy level and dependability. For the purpose of validating dynamic fault management techniques, two different solutions are developed. The first one is a simulation framework for C-Layer Fault Managers, based on SystemC as modeling language and event-driven simulator. This framework and its associated methodology allows exploring the Fault Manager design space, decoupling its design from the target FPGA development. The framework includes models for both the FPGA C-Layer and for the Fault Manager, which can interact at different abstraction levels (at configuration frame level and at JTAG or SelectMAP physical level). The framework is configurable, scalable and versatile, and includes fault injection capabilities. Simulation results for some scenarios are presented and discussed. The second one is a validation platform for Xilinx Virtex FPGA Fault Managers. The platform hosts three Xilinx Virtex-4 FX12 FPGA Modules and two general-purpose 32-bit Microcontroller Unit (MCU) Modules. The MCU Modules allow prototyping software-based CLayer and A-Layer Fault Managers. Each FPGA Module implements one A-Layer Ethernet link (through an Ethernet switch) with one of the MCU Modules, and one C-Layer JTAG link with the other. In addition, both MCU Modules exchange commands and data over an internal UART link. Similarly to the simulation framework, fault injection capabilities are implemented. Test results for some scenarios are also presented and discussed. In summary, this thesis covers the whole process from describing the problem of radiationinduced faults in SRAM-based FPGAs, then identifying and classifying fault management techniques, then proposing Fault Manager architectures and finally validating them by simulation and test. The proposed future work is mainly related to the implementation of radiation-hardened System Fault Managers.
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
Stream-mining approach is defined as a set of cutting-edge techniques designed to process streams of data in real time, in order to extract knowledge. In the particular case of classification, stream-mining has to adapt its behaviour to the volatile underlying data distributions, what has been called concept drift. Moreover, it is important to note that concept drift may lead to situations where predictive models become invalid and have therefore to be updated to represent the actual concepts that data poses. In this context, there is a specific type of concept drift, known as recurrent concept drift, where the concepts represented by data have already appeared in the past. In those cases the learning process could be saved or at least minimized by applying a previously trained model. This could be extremely useful in ubiquitous environments that are characterized by the existence of resource constrained devices. To deal with the aforementioned scenario, meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems (IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. By means of using meta-models as a recurrent drift detection mechanism, the ability to share concepts representations among different data mining processes is open. That kind of exchanges could improve the accuracy of the resultant local model as such model may benefit from patterns similar to the local concept that were observed in other scenarios, but not yet locally. This would also improve the efficiency of training instances used during the classification process, as long as the exchange of models would aid in the application of already trained recurrent models, that have been previously seen by any of the collaborative devices. Which it is to say that the scope of recurrence detection and representation is broaden. In fact the detection, representation and exchange of concept drift patterns would be extremely useful for the law enforcement activities fighting against cyber crime. Being the information exchange one of the main pillars of cooperation, national units would benefit from the experience and knowledge gained by third parties. Moreover, in the specific scope of critical infrastructures protection it is crucial to count with information exchange mechanisms, both from a strategical and technical scope. The exchange of concept drift detection schemes in cyber security environments would aid in the process of preventing, detecting and effectively responding to threads in cyber space. Furthermore, as a complement of meta-models, a mechanism to assess the similarity between classification models is also needed when dealing with recurrent concepts. In this context, when reusing a previously trained model a rough comparison between concepts is usually made, applying boolean logic. The introduction of fuzzy logic comparisons between models could lead to a better efficient reuse of previously seen concepts, by applying not just equal models, but also similar ones. This work faces the aforementioned open issues by means of: the MMPRec system, that integrates a meta-model mechanism and a fuzzy similarity function; a collaborative environment to share meta-models between different devices; a recurrent drift generator that allows to test the usefulness of recurrent drift systems, as it is the case of MMPRec. Moreover, this thesis presents an experimental validation of the proposed contributions using synthetic and real datasets.
Resumo:
This paper presents a completely autonomous solution to participate in the Indoor Challenge of the 2013 International Micro Air Vehicle Competition (IMAV 2013). Our proposal is a multi-robot system with no centralized coordination whose robotic agents share their position estimates. The capability of each agent to navigate avoiding collisions is a consequence of the resulting emergent behavior. Each agent consists of a ground station running an instance of the proposed architecture that communicates over WiFi with an AR Drone 2.0 quadrotor. Visual markers are employed to sense and map obstacles and to improve the pose estimation based on Inertial Measurement Unit (IMU) and ground optical flow data. Based on our architecture, each robotic agent can navigate avoiding obstacles and other members of the multi-robot system. The solution is demonstrated and the achieved navigation performance is evaluated by means of experimental flights. This work also analyzes the capabilities of the presented solution in simulated flights of the IMAV 2013 Indoor Challenge. The performance of the CVG UPM team was awarded with the First Prize in the Indoor Autonomy Challenge of the IMAV 2013 competition.
Resumo:
Microgrids are autonomously operated, geographically clustered electricity generation and distribution systems that supply power in closed system settings; they are highly compatible with renewable energy sources and distributed generation technologies. Mocrogrids are currently a serially underutilized and underappreciated commodity in the energy infrastructure portfolio worldwide. To demonstrate feasibility under poor conditions (little renewable energy potential and high demand) this capstone project develops a theoretical case study in which a renewable microgrid is employed to power rural communities of southern Montgomery County, Arkansas. Utilizing commercially manufactured 1.5-megawatt wind turbines and a 1-megawatt solar panel generation system, 4-megawatts of lithium ion battery storage, and demand response technology, a microgrid is designed that supplies 235 households with reliable electricity supply.
Resumo:
The goal of the project is to analyze, experiment, and develop intelligent, interactive and multilingual Text Mining technologies, as a key element of the next generation of search engines, systems with the capacity to find "the need behind the query". This new generation will provide specialized services and interfaces according to the search domain and type of information needed. Moreover, it will integrate textual search (websites) and multimedia search (images, audio, video), it will be able to find and organize information, rather than generating ranked lists of websites.
Resumo:
Background: For a comprehensive health sector response to intimate partner violence (IPV), interventions should target individual and health facility levels, along with the broader health systems level which includes issues of governance, financing, planning, service delivery, monitoring and evaluation, and demand generation. This study aims to map and explore the integration of IPV response in the Spanish national health system. Methods: Information was collected on five key areas based on WHO recommendations: policy environment, protocols, training, monitoring and prevention. A systematic review of public documents was conducted to assess 39 indicators in each of Spain’s 17 regional health systems. In addition, we performed qualitative content analysis of 26 individual interviews with key informants responsible for coordinating the health sector response to IPV in Spain. Results: In 88% of the 17 autonomous regions, the laws concerning IPV included the health sector response, but the integration of IPV in regional health plans was just 41%. Despite the existence of a supportive national structure, responding to IPV still relies strongly on the will of health professionals. All seventeen regions had published comprehensive protocols to guide the health sector response to IPV, but participants recognized that responding to IPV was more complex than merely following the steps of a protocol. Published training plans existed in 43% of the regional health systems, but none had institutionalized IPV training in medical and nursing schools. Only 12% of regional health systems collected information on the quality of the IPV response, and there are many limitations to collecting information on IPV within health services, for example underreporting, fears about confidentiality, and underuse of data for monitoring purposes. Finally, preventive activities that were considered essential were not institutionalized anywhere. Conclusions: Within the Spanish health system, differences exist in terms of achievements both between regions and between the areas assessed. Progress towards integration of IPV has been notable at the level of policy, less outstanding regarding health service delivery, and very limited in terms of preventive actions.
Resumo:
Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Resumo:
The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Turner-Fairbank Highway Research Center, McLean, Va.
Resumo:
Federal Highway Administration, Washington, D.C.