895 resultados para android, ios, multi-piaffatorma, applicazione mobile
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).
Resumo:
The mineral arsentsumebite Pb2Cu(AsO4)(SO4)(OH), a copper arsenate-sulfate hydroxide of the brackebuschite group has been characterised by Raman spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of SO42- AsO43- and HOAsO3 units. Raman spectroscopy readily distinguishes between the two minerals arsentsumebite and tsumebite. Raman bands attributed to arsenate are not observed in the Raman spectrum of tsumebite. Phosphate bands found in the Raman spectrum of tsumebite are not found in the Raman spectrum of arsentsumebite. Raman spectroscopy readily distinguishes the two minerals tsumebite and arsentsumebite.
Resumo:
Some minerals are formed which show poorly defined X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of the oxyanions in such minerals. Among this group of minerals is mallestigite with formula Pb3Sb5+(SO4)(AsO4)(OH)6•3H2O. The objective of this research is to determine the molecular structure of the mineral mallestigite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. Mallestigite is a mineral formed in ancient waste dumps such as occurs at Mallestiger, Carinthia, Austria and as such is a mineral of archaeological significance.
Resumo:
We have designed a mobile application that takes advantage of the built-in features of smart phones such as camera and GPS that allow users to take geo-tagged photos while on the move. Urban residents can take pictures of broken street furniture and public property requiring repair, attach a brief description, and submit the information as a maintenance request to the local government organisation of their city. This paper discusses the design approach that led to the application, highlights a built-in mechanism to elicit user feedback, and evaluates the progress to date with user feedback and log statistics. It concludes with an outlook highlighting user requested features and our own design aspirations for moving from a reporting tool to a civic engagement tool.
Resumo:
The increase of powerful mobile devices has accelerated the demand for mobile videos. Previous studies in mobile video have focused on understanding of mobile video usage, improvement of video quality, and user interface design in video browsing. However, research focusing on a deep understanding of users’ needs for a pleasing quality delivery of mobile video is lacking. In particular, what quality-delivery mode users prefer and what information relevant to video quality they need requires attention. This paper presents a qualitative interview study with 38 participants to gain an insight into three aspects: influencing factors of user-desired video quality, user-preferred quality-delivery modes, and user-required interaction information of mobile video. The results show that user requirements for video quality are related to personal preference, technology background and video viewing experience, and the preferred quality-delivery mode and interactive mode are diverse. These complex user requirements call for flexible and personalised quality delivery and interaction of mobile video.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Video games have shown great potential as tools that both engage and motivate players to achieve tasks and build communities in fantasy worlds. We propose that the application of game elements to real world activities can aid in delivering contextual information in interesting ways and help young people to engage in everyday events. Our research will explore how we can unite utility and fun to enhance information delivery, encourage participation, build communities and engage users with utilitarian events situated in the real world. This research aims to identify key game elements that work effectively to engage young digital natives, and provide guidelines to influence the design of interactions and interfaces for event applications in the future. This research will primarily contribute to areas of user experience and pervasive gaming.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
Purpose: Communication is integral to effective trauma care provision. This presentation will report on barriers to meaningful information transfer for multi-trauma patients upon discharge from the Emergency Department (ED) to the care areas of Intensive Care Unit, High Dependency Unit, and Perioperative Services. This is an ongoing study at one tertiary level hospital in Queensland. Method: This is a multi-phase, mixed method study. In Phase 1 data were collected about information transfer. This Phase was initially informed by a comprehensive literature review, then via focus groups, chart audit, staff survey and review of national and international trauma forms. Results: The barriers identified related to nursing handover, documented information, time inefficiency, patient complexity and stability and time of transfer. Specifically this included differences in staff expectations and variation in the nursing handover processes, no agreed minimum dataset of information handed over, missing, illegible or difficult to find information in documentation (both medical and nursing), low compliance with some forms used for documentation. Handover of these patients is complex with information coming from many sources, dealing with issues is more difficult for these patients when transferred out of hours. Conclusions and further directions: This study investigated the current communication processes and standards of information transfer to identify barriers and issues. The barriers identified were the structure used for documentation, processes used (e.g. handover), patient acuity and time. This information is informing the development, implementation and evaluation of strategies to ameliorate the issues identified.
Resumo:
The increasing capability of mobile devices and social networks to gather contextual and social data has led to increased interest in context-aware computing for mobile applications. This paper explores ways of reconciling two different viewpoints of context, representational and interactional, that have arisen respectively from technical and social science perspectives on context-aware computing. Through a case study in agile ridesharing, the importance of dynamic context control, historical context and broader context is discussed. We build upon earlier work that has sought to address the divide by further explicating the problem in the mobile context and expanding on the design approaches.
Resumo:
Mobile phones are now powerful and pervasive making them ideal information browsers. The Internet has revolutionized our lives and is a major knowledge sharing media. However, many mobile phone users cannot access the Internet (for financial or technical reasons) and so the mobile Internet has not been fully realized. We propose a novel content delivery network based on both a factual and speculative analysis of today’s technology and analyze its feasibility. If adopted people living in remote regions without Internet will be able to access essential (static) information with periodic updates.
Resumo:
Site-specific performance provides choices in audience experience via degrees of scale, proximity, levels of immersion and viewing perspectives. Beyond these choices, multi-site promenade events also form a connected audience/performer relationship in which moving together in time and space can produce a shared narrative and aesthetic sensibility of collective, yet individuated and shifting meanings. This paper interrogates this notion through audience/performer experiences in two separate multi-site, dance-led events. here/there/then/now occurred in four intimate sites within the Brisbane Powerhouse, providing a theatricalised platform for audiences to create linked narratives through open-ended and fragmented intertextuality. Accented Body, based on the concept of “the body as site and in site” and notions of connectivity, provided a more expansive platform for a similar, but heightened, shared engagement. Audiences traversed 6 outdoor and 2 indoor Brisbane sites moving to varying levels of a large complex. Eleven, predominantly interactive, screens provided links to other sites as well as to distributed presences in Seoul and London. The differentiation in scale and travel time between sites deepened the immersive experiences of audiences who reported transformative engagements with both site and architecture, accompanied by a sense of extended and yet quickened time.
Practical improvements to simultaneous computation of multi-view geometry and radial lens distortion
Resumo:
This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.