971 resultados para age type of added specimens
Resumo:
Three polyester bag experiments were conducted with fistulated Bos indicus steers to determine the effect of the amount and type of nitrogen (N) supplement on the digestion rate of forages different in quality. In Experiment 1, test substrates were incubated in polyester bags in the rumen of steers fed ryegrass, pangola grass, speargrass and Mitchell grass hays in a 4 by 4 Latin-square design. In Experiment 2, test substrates were incubated in polyester bags in the rumen of steers fed speargrass hay supplemented with urea and ammonium sulfate (US), branched-chain amino acids with US (USAA), casein, cottonseed meal, yeast and Chlorella algae in a 7 by 3 incomplete Latin-square design. In Experiment 3, test substrates were incubated in polyester bags in the rumen of steers fed Mitchell grass hay supplemented with increasing amounts of US or Spirulina algae (Spirulina platensis). The test substrates used in all experiments were speargrass, Mitchell grass, pangola grass or ryegrass hays. Digestion rate of the ryegrass substrate was higher than that of the speargrass substrate (P < 0.05) in Experiment 1. Supplementation with various N sources increased the degradation rate and effective degradability of all incubated substrates above that apparent in Control steers (P < 0.05; Experiment 2). Supplementation of US and Spirulina increased degradation rate and effective degradability of ryegrass, pangola grass and Mitchell grass substrates above that apparent in Control steers (P < 0.05; Experiment 3). However, there was no further response on digestion rate of the substrates in increasing supplementation levels either for US or Spirulina. In conclusion, rate of digestion was affected by forage physical and anatomical properties. Supplementation with various N sources increased rate of digestion when the Control forage ration was very low in N but once a minimum level of N supplementation was reached, irrespective of form of N or other potential growth factors, there was no further increase in rate of digestion.
Resumo:
Reliable age information is vital for effective fisheries management, yet age determinations are absent for many deepwater sharks as they cannot be aged using traditional methods of growth bands counts. An alternative approach to ageing using near infrared spectroscopy (NIRS) was investigated using dorsal fin spines, vertebrae and fin clips of three species of deepwater sharks. Ages were successfully estimated for the two dogfish, Squalus megalops and Squalus montalbani, and NIRS spectra were correlated with body size in the catshark, Asymbolus pallidus. Correlations between estimated-ages of the dogfish dorsal fin spines and their NIRS spectra were good, with S. megalops R2=0.82 and S. montalbani R2=0.73. NIRS spectra from S. megalops vertebrae and fin clips that have no visible growth bands were correlated with estimated-ages, with R2=0.89 and 0.76, respectively. NIRS has the capacity to non-lethally estimate ages from fin spines and fin clips, and thus could significantly reduce the numbers of sharks that need to be lethally sampled for ageing studies. The detection of ageing materials by NIRS in poorly calcified deepwater shark vertebrae could potentially enable ageing of this group of sharks that are vulnerable to exploitation.
Resumo:
Increasing organic carbon inputs to agricultural soils through the use of pastures or crop residues has been suggested as a means of restoring soil organic carbon lost via anthropogenic activities, such as land use change. However, the decomposition and retention of different plant residues in soil, and how these processes are affected by soil properties and nitrogen fertiliser application, is not fully understood. We evaluated the rate and extent of decomposition of 13C-pulse labelled plant material in response to nitrogen addition in four pasture soils of varying physico-chemical characteristics. Microbial respiration of buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) residues was monitored over 365-days. A double exponential model fitted to the data suggested that microbial respiration occurred as an early rapid and a late slow stage. A weighted three-compartment mixing model estimated the decomposition of both soluble and insoluble plant 13C (mg C kg−1 soil). Total plant material decomposition followed the alkyl C: O-alkyl C ratio of plant material, as determined by solid-state 13C nuclear magnetic resonance spectroscopy. Urea-N addition increased the decomposition of insoluble plant 13C in some soils (≤0.1% total nitrogen) but not others (0.3% total nitrogen). Principal components regression analysis indicated that 26% of the variability of plant material decomposition was explained by soil physico-chemical characteristics (P = 0.001), which was primarily described by the C:N ratio. We conclude that plant species with increasing alkyl C: O-alkyl C ratio are better retained as soil organic matter, and that the C:N stoichiometry of soils determines whether N addition leads to increases in soil organic carbon stocks.
Resumo:
We propose a new type of high-order elements that incorporates the mesh-free Galerkin formulations into the framework of finite element method. Traditional polynomial interpolation is replaced by mesh-free interpolations in the present high-order elements, and the strain smoothing technique is used for integration of the governing equations based on smoothing cells. The properties of high-order elements, which are influenced by the basis function of mesh-free interpolations and boundary nodes, are discussed through numerical examples. It can be found that the basis function has significant influence on the computational accuracy and upper-lower bounds of energy norm, when the strain smoothing technique retains the softening phenomenon. This new type of high-order elements shows good performance when quadratic basis functions are used in the mesh-free interpolations and present elements prove advantageous in adaptive mesh and nodes refinement schemes. Furthermore, it shows less sensitive to the quality of element because it uses the mesh-free interpolations and obeys the Weakened Weak (W2) formulation as introduced in [3, 5].
Resumo:
The role of added sugar in a healthy diet and implications for health inequalities Sugars provide a readily available, inexpensive source of energy, can increase palatability and help preserve some foods. However added sugars also dilute the nutrient density of the diet. Further, consumption of sugar-sweetened beverages is associated with increased risk of weight gain and reduced bone strength, and high or frequent consumption of added sugars is associated with increased risk of dental caries, particularly in infants and young children. The products of the 2013 NHMRC Dietary Guidelines work program at www.eatforhealth.gov.au include the comprehensive evidence base about food, diet and health relationships and the dietary modeling used to inform recommendations. This presentation will detail the scientific evidence underpinning the revised dietary recommendations on consumption of foods and drinks containing added sugar and compare recommendations with the most recently available relevant Australian dietary intake and trend data. Differences in intakes of relevant food and drinks across quintiles of social disadvantage and in particular between Aboriginal and Torres Strait Islander groups and non-Indigenous Australians will also be explored.
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
Abstract is not available.
Resumo:
Abstract is not available.
Resumo:
The para orientation by the carbonyl groups in the bromination of phenanthrenequinone derivatives has been explained on the basis of an excited state resulting from thermal excitation of the quinone and/or from a n→π* transition of the nonbonding electrons of the oxygen atoms. A general preparative method for the syntheses of 3-bromophenanthrenequinone derivatives has been developed. The structure of 2-nitro-6-bromophenanthrenequinone has been established by degradation. Synthesis of 2-nitro-6-bromofluorenone is described. Direct bromination of phenanthrenequinone to 2-bromo and 2,7-dibromo derivatives has also been described.
Resumo:
We have made concurrent measurements of ionic current and optical transmission between crossed polarisers on several nematics with positive dielectric anisotropy under the action of applied low frequency (< 1KHz) square wave voltages. When the field E is low, the measured current is linear in E and there is no electrooptic response. Beyond some value of the field (E(0)similar to 100 esu), the current becomes independent of the field (phenomenon of limiting current). Further an electrooptic signal is measured at twice the frequency of the applied voltage, which exhibits a peak as a function of the field. The width of the peak is 3 to 4 times the value of E-0, and the signal level at the peak decreases as the frequency is increased. These measurements have been made on three highly polar compounds with cyano end groups. Careful observations do not show any evidence of electrohydrodynamic instabilities in the sample. It is argued that the observations can be understood if at the onset of the phenomenon of the limiting current, a strong electric field gradient is established near one of the electrodes due to the sweeping of an ionic species with high mobility. The field gradient produces a flexoelectric deformation of the director field, which in turn gives rise to the electrooptic effect. At higher fields, the stabilising dielectric torque takes over to suppress this instability.
Resumo:
In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The reaction of [Cp*TaCl(4)], 1 (Cp* = eta(5)-C(5)Me(5)), with [LiBH(4)center dot THF] at -78 degrees C, followed by thermolysis in the presence of excess [BH(3)center dot THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH} ] 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.