986 resultados para acute pulmonary embolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nocturnal melatonin pineal output is triggered by sympathetic outflow. Antidepressants that block norepinephrine neuronal uptake should increase pineal function. This can be monitored by measuring 6-sulfatoximelatonin (aMT6s), the main melatonin metabolite, in the urine. In this study, we compared the excretion of aMT6s before (baseline), one, and 21 days after administration of clomipramine to healthy subjects (n = 32). At the end of treatment, subjects were divided into responders (n = 12) and non-responders (n = 20) according to the improvement in their emotional state in three out of four domains (interpersonal tolerance, efficiency, well-being and feeling different from the usual self). There was no difference in aMT6s before clomipramine between responders and non-responders in any of the time intervals analysed (06:00-12:00, 12:00-18:00, 18:00-24:00 and 24:00-06:00 hours). At day one, but not at day 21, the fraction of aMT6s excreted during the time interval 24:00-06:00, relative to the total amount excreted by each subject per day, was significantly higher (P = 0.0287) than baseline (0.57 +/- 0.04) in responders. No significant difference was observed in non-responders. The increase in pineal function induced by clomipramine was restricted to day one, indicating that long-lasting adaptation restores pineal function. In addition, the day one increase in aMT6s was significantly increased only in the responders group, raising the possibility that the blocking of neuronal uptake is predictive of emotional improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluated the effects of an intramuscular injection of Tityus serrulatus venom (TsV) (0.67 mu g/g) on lung mechanics and lung inflammation at 15, 30, 60 and 180 min after inoculation. TsV inoculation resulted in increased lung elastance when compared with the control group (p < 0.001): these values were significantly higher at 60 min than at 15 and 180 min (p < 0.05). Resistive pressure (Delta P(1)) values decreased significantly at 30, 60 and 180 min after TsV injection (p < 0.001). TsV inoculation resulted in increased lung inflammation, characterised by an increased density of mononuclear cells at 15, 30, 60 and 180 min after TsV injection when compared with the control group (p < 0.001). TsV inoculation also resulted in an increased pulmonary density of polymorphonuclear cells at 15, 30 and 60 min following injection when compared to the control group (p < 0.001). In conclusion, T serrulatus venom leads to acute lung injury, characterised by altered lung mechanics and increased pulmonary inflammation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P .05). S100 group had a larger maximum lung volume, V30, compared with the MEC group (P .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: To test whether different degrees of immunologic and fibrotic airway remodeling processes occur in idiopathic interstitial pneumonias (IIPs), with impact on functional tests and survival, we studied the collagen/elastic system and immune cell density in the bronchiolar interstitium of lungs with the major types of IIPs. Materials and Methods: Histochemistry, immunohistochemistry and morphometric analysis were used to evaluate collagen/elastic fibers and immune cells in the bronchiolar interstitium of open lung biopsies of patients with cryptogenic organizing pneumonia [COP/organizing pneumonia (OP) = 10], acute interstitial pneumonia [AIP/diffuse alveolar damage (DAD) = 20], nonspecific interstitial pneumonia (NSIP/NSIP = 20) and idiopathic pulmonary fibrosis/usual interstitial pneumonia (UIP) = 20. Results: OP lungs presented a significant increase in collagenous/elastic fibers and in the total density of immune cells in the bronchiolar interstitium compared to controls, DAD, NSIP and UIP. We observed a significant increase in CD4, CD8 and CD20 lymphocytes, as well as in neutrophils, macrophages and plasma cells in OP. The increased amount of elastic fibers in the bronchiolar interstitium from OP lungs has a direct association with forced vital capacity (FVC) (r(s) = 0.99, P = 0.03). The most important survival predictor was CD20+ lymphocytes in the bronchiolar interstitium. In decreasing order, patients with UIP [Odds Ratio (OR) = 35.01], high forced expiratory volume in 1 s (FEV1)/FVC FVC (OR = 7.01), increased CD20+ lymphocytes (OR = 4.44) and collagenous/elastic fiber densities (OR = 2.03 and OR = 1.49, respectively) in the bronchiolar interstitium were those who had the greatest risk of death, followed by those with AIP, NSIP and COP. Conclusion: Different degrees of immunologic and fibroelastotic airway remodeling processes occur in the major types of IIPs with impact on physiological tests and survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular remodeling is an important feature in asthma pathophysiology. Although investigations suggested that nitric oxide (NO) is involved in lung remodeling, little evidence established the role of inducible NO synthase (iNOS) isoform in bronchial vascular remodeling. The authors investigated if iNOS contribute to bronchial vascular remodeling induced by chronic allergic pulmonary inflammation. Guinea pigs were submitted to ovalbumin exposures with increasing doses (1 similar to 5 mg/mL) for 4 weeks. Animals received 1400W (iNOS-specific inhibitor) treatment for 4 days beginning at 7th inhalation. Seventy-two hours after the 7th inhalation, animals were anesthetized, mechanical ventilated, exhaled NO was collected, and lungs were removed and submitted to picrosirius and resorcin-fuchsin stains and to immunohistochemistry for matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and transforming growth factor-beta (TGF-beta). Collagen and elastic fiber deposition as well as MMP-9, TIMP-1, and TGF-beta expression were increase in bronchial vascular wall in ovalbumin-exposed animals. The iNOS inhibition reduced all parameters studied. In this model, iNOS inhibition reduced the bronchial vascular extracellular remodeling, particularly controlling the collagen and elastic fibers deposition in pulmonary vessels. This effect can be associated to a reduction on TGF-beta and on metalloproteinase-9/TIMP-1 vascular expression. It reveals new therapeutic strategies and some possible mechanism related to specific iNOS inhibition to control vascular remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we investigated the effects of Crotalus durissus terrificus venom (CdtV) on the pulmonary mechanic events [static and dynamic elastance, resistive (Delta P1) and viscoelastic pressures (Delta P2)] and histology after intramuscular injection of saline solution (control) or venom (0.6 mu g/g). The static and dynamic elastance values were increased significantly after 3 It of venom inoculation, but were reduced at control values in the other periods studied. The Delta P1 values that correspond to the resistive properties of lung tissue presented a significant increase after 6 h of CdtV injection, reducing to basal levels 12 h after the venom injection. In Delta P2 analysis, correspondent to viscoelastic components, an increase occurred 12 h after the venom injection, returning to control values at 24 h. CdtV also caused an increase of leukocytes recruitment (3-24 h) to the airways wall as well as to the lung parenchyma. In conclusion, C. durissus terrificus rattlesnake venom leads to lung injury which is reverted, after 24 h of inoculation. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we describe a confirmed case of Loxosceles spider bite that illustrates the critical complications seen in loxoscelism, including skin necrosis, rhabdomyolysis, hemolysis, coagulopathy, acute kidney failure, and electrolyte disorders. Upon initial assessment, laboratory studies revealed the following: the white blood cell count was 29 400 WBCs/mm(3), hemoglobin was 9.2g/dL, and the platelet count was 218000cells/mm(3). Coagulation studies revealed the following: international normalized ratio, 1.83; activated partial-thromboplastin time, 62s; D-dimer, 600 ng/mL (normal range < 500 ng/mL); free protein S, 37% (normal range = 64-114%); protein C, negative; and antithrombin III, negative. Various serum levels were abnormal: urea, 110mg/dL; creatinine, 3.1 mg/dL; indirect bilirubin, 3.8 mg/dL; creatine kinase, 1631 U/L, lactate dehydrogenase, 6591 U/L; potassium 6.2mmol/L. Urine tests were positive for hemoglobin and bilirubin. In addition, concentrations of interleukin-6 and tumor necrosis factor-alpha were notably elevated in the serum. In conclusion, physicians must be alert to the possibility of loxoscelism when a patient presents with the clinical and laboratory findings described above, especially if the patient resides in an endemic area. Advances in our understanding of multiple pathways and mediators that orchestrate the response to Loxosceles venom might reveal new possibilities for the management of loxoscelism. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H(2)O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H(2)O. Measurements and Main Results: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs. (Crit Care Med 2011; 39:1074-1081)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognizing the differences and similarities at pathological level in both diseases may lead to a better understanding of the overlapping clinical and physiological phenotypes, thereby helping to better plan specific treatment and long-term management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Collagen V shows promise as an inducer of interstitial lung fibrosis in experimental systemic sclerosis (SSc). Materials and methods Remodelling of the pulmonary interstitium was evaluated based on the clinical data and open lung biopsies from 15 patients with SSc. Normal lung tissues obtained from eight individuals who died of traumatic injuries were used as control group. Immunofluorescence, immunohistochemistry, morphometry, tri-dimensional reconstruction and a real-time polymerase chain reaction were used to evaluate the quantity, structure and molecular chains of collagen V. The impact of these markers was tested on clinical data. Results The main difference in collagen V content between SSc patients and the control group was an increased, abnormal and distorted fibre deposition in the alveolar septa and the pre-acinar artery wall. The lungs from SSc patients presented [alpha 1(V)] and [alpha 2(V)] mRNA chain expression increased, but [alpha 2(V)] was proportionally increased compared with the control group. High levels of collagen V were inversely associated with vital capacity (r = -0.72; P = 0.002), forced vital capacity (r = -0.76; P < 0.001), forced expiratory volume in 1-s (r = -0.89; P < 0.001) and diffusing capacity for carbon monoxide (r = -0.62; P = 0.04). Conclusions Abnormal collagen V fibres are overproduced in lungs from SSc patients and may play an important role in the pathogenesis of the disease as this molecule regulates tissue collagen assembly. The aberrant histoarchitecture observed in SSc can be related to the overexpression of the [alpha 2(V)] gene of unknown origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Injectable corticosteroids have been used in phonosurgery to prevent scarring of the vocal fold because of their effects of wound healing, and to ensure better voice quality. We histologically evaluated the effects of dexamethasone sodium phosphate infiltration on acute vocal fold wound healing in rabbits 3 and 7 days after surgically induced injury by quantification of the inflammatory reaction and collagen deposition. Methods: A standardized surgical incision was made in the vocal folds of 12 rabbits, and 0.1 mL dexamethasone sodium phosphate (4 mg/mL) was injected into the left vocal fold. The right vocal fold was not injected and served as the control. The larynges were collected 3 and 7 days after surgery. For histologic analysis, the vocal folds were stained with hematoxylin-eosin for quantification of the inflammatory response and with picrosirius red for qunatification of collagen depostion. Results: There was no quantitative difference in the inflammatory response between vocal folds injected with the corticosteroid and control vocal folds. However, the rate of collage deposition was significantly lower in the corticosteroid-treated group at 3 and 7 days after injury (p = 0.002). Conclusions: The present results suggest that dexamethasone reduces collagen depostion during acute vocal fold wound healing.