914 resultados para abstract reasoning
Resumo:
Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's partition technique. The authors have generalized Yen's model from Bayesian probability theory to the D-S theory of evidence. Based on such a generalized model, an extended framework for evidential reasoning systems is briefly specified in which a semi-graph method is used to describe the heuristic knowledge. The advantage of such a method is that it can avoid the complexity of graphs without losing the explicitness of graphs. The extended framework can be widely used to build expert systems
Resumo:
CCTV systems are broadly deployed in the present world. Despite this, the impact on anti-social and criminal behaviour has been minimal. Subject reacquisition is a fundamental task to ensure in-time reaction for intelligent surveillance. However, traditional reacquisition based on face recognition is not scalable, hence in this paper we use reasoning techniques to reduce the computational effort which deploys the time-of-flight information between interested zones such as airport security corridors. Also, to improve accuracy of reacquisition, we introduce the idea of revision as a method of post-processing.We demonstrate the significance and usefulness of our framework with an experiment which shows much less computational effort and better accuracy.
Resumo:
Multi-core and many-core platforms are becoming increasingly heterogeneous and asymmetric. This significantly increases the porting and tuning effort required for parallel codes, which in turn often leads to a growing gap between peak machine power and actual application performance. In this work a first step toward the automated optimization of high level skeleton-based parallel code is discussed. The paper presents an abstract annotation model for skeleton programs aimed at formally describing suitable mapping of parallel activities on a high-level platform representation. The derived mapping and scheduling strategies are used to generate optimized run-time code. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning.
Resumo:
A sample of 99 children completed a causal learning task that was an analogue of the food allergy paradigm used with adults. The cue competition effects of blocking and unovershadowing were assessed under forward and backward presentation conditions. Children also answered questions probing their ability to make the inference posited to be necessary for blocking by a reasoning account of cue competition. For the first time, children's working memory and general verbal ability were also measured alongside their causal learning. The magnitude of blocking and unovershadowing effects increased with age. However, analyses showed that the best predictor of both blocking and unovershadowing effects was children's performance on the reasoning questions. The magnitude of the blocking effect was also predicted by children's working memory abilities. These findings provide new evidence that cue competition effects such as blocking are underpinned by effortful reasoning processes.
Resumo:
Base rate neglect on the mammography problem can be overcome by explicitly presenting a causal basis for the typically vague false-positive statistic. One account of this causal facilitation effect is that people make probabilistic judgements over intuitive causal models parameterized with the evidence in the problem. Poorly defined or difficult-to-map evidence interferes with this process, leading to errors in statistical reasoning. To assess whether the construction of parameterized causal representations is an intuitive or deliberative process, in Experiment 1 we combined a secondary load paradigm with manipulations of the presence or absence of an alternative cause in typical statistical reasoning problems. We found limited effects of a secondary load, no evidence that information about an alternative cause improves statistical reasoning, but some evidence that it reduces base rate neglect errors. In Experiments 2 and 3 where we did not impose a load, we observed causal facilitation effects. The amount of Bayesian responding in the causal conditions was impervious to the presence of a load (Experiment 1) and to the precise statistical information that was presented (Experiment 3). However, we found less Bayesian responding in the causal condition than previously reported. We conclude with a discussion of the implications of our findings and the suggestion that there may be population effects in the accuracy of statistical reasoning.
Resumo:
People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430–450, 2007) proposed that a causal Bayesian framework accounts for peoples’ errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.