Episodic Reasoning for Vision-Based Human Action Recognition


Autoria(s): Santofimia, Maria J.; Martinez-del-Rincon, Jesus; Nebel, Jean-Christophe
Data(s)

14/05/2014

Resumo

Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/episodic-reasoning-for-visionbased-human-action-recognition(973c25ba-1711-40ea-9b84-40a90c2b9872).html

http://dx.doi.org/10.1155/2014/270171

http://pure.qub.ac.uk/ws/files/9865652/270171.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Santofimia , M J , Martinez-del-Rincon , J & Nebel , J-C 2014 , ' Episodic Reasoning for Vision-Based Human Action Recognition ' The Scientific World Journal , vol 2014 , 270171 . DOI: 10.1155/2014/270171

Tipo

article