996 resultados para Yale, Elihu, 1649-1721.
Resumo:
Prompted by claims that garbage collection can outperform stack allocation when sufficient physical memory is available, we present a careful analysis and set of cross-architecture measurements comparing these two approaches for the implementation of continuation (procedure call) frames. When the frames are allocated on a heap they require additional space, increase the amount of data transferred between memory and registers, and, on current architectures, require more instructions. We find that stack allocation of continuation frames outperforms heap allocation in some cases by almost a factor of three. Thus, stacks remain an important implementation technique for procedure calls, even in the presence of an efficient, compacting garbage collector and large amounts of memory.
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem.
Resumo:
This paper describes the main features of a view-based model of object recognition. The model tries to capture general properties to be expected in a biological architecture for object recognition. The basic module is a regularization network in which each of the hidden units is broadly tuned to a specific view of the object to be recognized.
Resumo:
How does the brain recognize three-dimensional objects? We trained monkeys to recognize computer rendered objects presented from an arbitrarily chosen training view, and subsequently tested their ability to generalize recognition for other views. Our results provide additional evidence in favor of with a recognition model that accomplishes view-invariant performance by storing a limited number of object views or templates together with the capacity to interpolate between the templates (Poggio and Edelman, 1990).
Resumo:
We introduce a new learning problem: learning a graph by piecemeal search, in which the learner must return every so often to its starting point (for refueling, say). We present two linear-time piecemeal-search algorithms for learning city-block graphs: grid graphs with rectangular obstacles.
Resumo:
An effective approach of simulating fluid dynamics on a cluster of non- dedicated workstations is presented. The approach uses local interaction algorithms, small communication capacity, and automatic migration of parallel processes from busy hosts to free hosts. The approach is well- suited for simulating subsonic flow problems which involve both hydrodynamics and acoustic waves; for example, the flow of air inside wind musical instruments. Typical simulations achieve $80\\%$ parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed measurements of the parallel efficiency of 2D and 3D simulations are presented, and a theoretical model of efficiency is developed which fits closely the measurements. Two numerical methods of fluid dynamics are tested: explicit finite differences, and the lattice Boltzmann method.
Resumo:
We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at M.I.T., and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
This paper consists of two major parts. First, we present the outline of a simple approach to very-low bandwidth video-conferencing system relying on an example-based hierarchical image compression scheme. In particular, we discuss the use of example images as a model, the number of required examples, faces as a class of semi-rigid objects, a hierarchical model based on decomposition into different time-scales, and the decomposition of face images into patches of interest. In the second part, we present several algorithms for image processing and animation as well as experimental evaluations. Among the original contributions of this paper is an automatic algorithm for pose estimation and normalization. We also review and compare different algorithms for finding the nearest neighbors in a database for a new input as well as a generalized algorithm for blending patches of interest in order to synthesize new images. Finally, we outline the possible integration of several algorithms to illustrate a simple model-based video-conference system.
Resumo:
In this paper three problems related to the analysis of facial images are addressed: the illuminant direction, the compensation of illumination effects and, finally, the recovery of the pose of the face, restricted to in-depth rotations. The solutions proposed for these problems rely on the use of computer graphics techniques to provide images of faces under different illumination and pose, starting from a database of frontal views under frontal illumination.
Resumo:
In Phys. Rev. Letters (73:2), Mantegna et al. conclude on the basis of Zipf rank frequency data that noncoding DNA sequence regions are more like natural languages than coding regions. We argue on the contrary that an empirical fit to Zipf"s "law" cannot be used as a criterion for similarity to natural languages. Although DNA is a presumably "organized system of signs" in Mandelbrot"s (1961) sense, and observation of statistical featurs of the sort presented in the Mantegna et al. paper does not shed light on the similarity between DNA's "gramar" and natural language grammars, just as the observation of exact Zipf-like behavior cannot distinguish between the underlying processes of tossing an M-sided die or a finite-state branching process.
Resumo:
The need to generate new views of a 3D object from a single real image arises in several fields, including graphics and object recognition. While the traditional approach relies on the use of 3D models, we have recently introduced techniques that are applicable under restricted conditions but simpler. The approach exploits image transformations that are specific to the relevant object class and learnable from example views of other "prototypical" objects of the same class. In this paper, we introduce such a new technique by extending the notion of linear class first proposed by Poggio and Vetter. For linear object classes it is shown that linear transformations can be learned exactly from a basis set of 2D prototypical views. We demonstrate the approach on artificial objects and then show preliminary evidence that the technique can effectively "rotate" high- resolution face images from a single 2D view.
Resumo:
The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput.