1000 resultados para Wayfaring life.
Resumo:
[EN]This project is going to study the implications of the gender of an individual in the rate-setting process of life insurance. In order to do so there is a review of the continuous changes that have taken place in the national and European legislation following the enactment of the Directive 2004/113/EC, as well as its consequences from the prohibition to differentiate the premiums and benefits on the grounds of gender. In this area, the evolution of the Spanish insurance sector and the influence of the new legislation are examined. Furthermore, there is an analysis of the differences between men and women, which to some extent have a direct impact in the management and development of the life insurance companies. Finally, methods to calculate the premium and the benefits are proposed with the purpose of preventing the restrictions imposed by the Directive 2004/113/EC. In order to check the repercussions of the use of unisex tables a comparison is made between the premiums obtained for a whole life insurance by allocating the same weighing to the actuarial male and female mortality tables and those that would result if the distinction by gender were allowed.
Resumo:
This brief reports highlights the significance of scale readings of salmon. The reasons for colour change of scales and scale rings are briefly explained. Scale readings of salmon fry from the River Lune in the north west of England are presented. The salmon was captured in 1957/58.
Resumo:
Ichthyoplankton surveys have been used to provide an independent estimate of adult spawning biomass of commercially exploited species and to further our understanding of the recruitment processes in the early life stages. However, predicting recruitment has been difficult because of the complex interaction of physical and biological processes operating at different spatial and temporal scales that can occur at the different life stages. A model of first-year life-stage recruitment was applied to Georges Bank Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks over the years 1977–2004 by using environmental and densitydependent relationships. The best lifestage mortality relationships for eggs, larvae, pelagic juveniles, and demersal juveniles were first determined by hindcasting recruitment estimates based on egg and larval abundance and mortality rates derived from two intensive sampling periods, 1977–87 and 1995–99. A wind-driven egg mortality relationship was used to estimate losses due to transport off the bank, and a wind-stress larval mortality relationship was derived from feeding and survival studies. A simple metric for the density-dependent effects of Atlantic cod was used for both Atlantic cod and haddock. These life stage proxies were then applied to the virtual population analysis (VPA) derived annual egg abundances to predict age-1 recruitment. Best models were determined from the correlation of predicted and VPA-derived age-1 abundance. The larval stage was the most quantifiable of any stage from surveys, whereas abundance estimates of the demersal juvenile stage were not available because of undersampling. Attempts to forecast recruitment from spawning stock biomass or egg abundance, however, will always be poor because of variable egg survival.
Resumo:
Commercial fisheries that are managed with minimum size limits protect small fish of all ages and may affect size-selective mortality by the differential removal of fast growing fish. This differential removal may decrease the average size at age, maturation, or sexual transition of the exploited population. When fishery-independent data are not available, a comparison of life history parameters of landed with those of discarded fish (by regulation) will indicate if differential mortality is occurring with the capture of young but large fish (fast growing phenotypes). Indications of this differential size-selective mortality would include the following: the discarded portion of the target fish would have similar age ranges but smaller sizes at age, maturation, and sexual transition as that of landed fish. We examined three species with minimum size limits but different exploitation histories. The known heavily exploited species (Rhomboplites aurorubens [vermilion snapper] and Pagrus pagrus [red porgy]) show signs of this differential mortality. Their landed catch includes many young, large fish, whereas discarded fish had a similar age range and mean ages but smaller sizes at age than the landed fish. The unknown exploited species, Mycteroperca phenax (scamp), showed no signs of differential mortality due to size-selective fishing. Landed catch consisted of old, large fish and discarded scamp had little overlap in age ranges, had significantly different mean ages, and only small differences in size at age when compared to comparable data for landed fish.
Resumo:
Distribution and demographics of the hogfish (Lachnolaimus maximus) were investigated by using a combined approach of in situ observations and life history analyses. Presence, density, size, age, and size and age at sex change all varied with depth in the eastern Gulf of Mexico. Hogfish (64–774 mm fork length and 0–19 years old) were observed year-round and were most common over complex, natural hard bottom habitat. As depth increased, the presence and density of hogfish decreased, but mean size and age increased. Size at age was smaller nearshore (<30 m). Length and age at sex change of nearshore hogfish were half those of offshore hogfish and were coincident with the minimum legal size limit. Fishing pressure is presumably greater nearshore and presents a confounding source of increased mortality; however, a strong red tide occurred the year before this study began and likely also affected nearshore demographics. Nevertheless, these data indicate ontogenetic migration and escapement of fast-growing fish to offshore habitat, both of which should reduce the likelihood of fishing-induced evolution. Data regarding the hogfish fishery are limited and regionally dependent, which has confounded previous stock assessments; however, the spatially explicit vital rates reported herein can be applied to future monitoring efforts.
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
Settled juvenile blue rockfish (Sebastes mystinus) were collected from two kelp beds approximately 335 km apart off Mendocino in northern California and Monterey in central California. A total of 112 rockfish were collected from both sites over 5 years (1993, 1994, 2001, 2002, and 2003). Total age, settlement date, age at settlement, and birth date were determined from otolith microstructure. Fish off Mendocino settled mostly in June and fish off Monterey settled mostly in May (average difference in settlement=23 days). Although the difference in the timing of settlement followed this same pattern for both areas over the five years, settlement occurred later in 2002 and 2003 than in the prior years of sampling. The difference in the timing of settlement was due primarily to differences in birth dates for the two areas. The time of settlement was positively related to upwelling and negatively related to sea level anomaly for most of the months before settlement. Knowledge of the timing of settlement has implications for design and placement of marine protected areas because protection of nursery grounds is frequently a major objective of these protected areas. The timing of settlement is also an important consideration in the planning of surveys of early recruits because mistimed surveys (caused by latitudinal differences in the timing of settlement) could produce biased estimates.
Resumo:
Citharichthys cornutus and C. gymnorhinus, diminutive flatfishes inhabiting continental shelves in the western Atlantic Ocean, are infrequently reported and poorly known. We identified 594 C. cornutus in 56 different field collections (68–287 m; most between 101–200 m) off the eastern United States, Bahamas, and eastern Caribbean Sea. Historical records and recently captured specimens document the northern geographic range of adults on the shelf off New Jersey (40°N, 70°W). Citharichthys cornutus measured 17.2–81.3 mm standard length (SL); males (20.0–79.1 mm SL) and females (28.0–81.3 mm SL) attain similar sizes (sex could not be determined for fish <20 mm SL). Males reach nearly 100% maturity at ≥60 mm SL. The smallest mature females are 41.5 mm SL, and by 55.1 mm SL virtually all are mature. Juveniles are found with adults on the outer shelf. Only 214 C. gymnorhinus were located in 42 different field collections (35–201 m, with 90% between 61 and 120 m) off the east coast of the United States, Bahamas, and eastern Caribbean Sea. Adults are found as far north as the shelf off Cape Hatteras, NC (35°N, 75°W). This diminutive species (to 52.4 mm SL) is among the smallest flatfishes but males (n=131; 20.3–52.4 mm SL) attain a slightly larger maximum size than that of females (n=58; 26.2–48.0 mm SL). Males begin to mature between 29 and 35 mm SL and reach 100% maturity by 35–40 mm SL. Some females are mature at 29 mm SL, and all females >35.1 mm SL are mature. Overlooked specimens in museum collections and literature enabled us to correct long-standing inaccuracies in northern distributional limits that appear in contemporary literature and electronic data bases for these species. Associated locality-data for these specimens allow for proper evaluation of distributional information for these species in relation to hypotheses regarding shifts in species ranges due to climate change effects.
Resumo:
Larvae of the genus Icelinus are collected more frequently than any other sculpin larvae in ichthyoplankton surveys in the Gulf of Alaska and Bering Sea, and larvae of the northern sculpin (Icelinus borealis) are commonly found in the ichthyofauna in both regions. Northern sculpin are geographically isolated north of the Aleutian Islands, Alaska, which allows for a definitive description of its early life history development in the Bering Sea. A combination of morphological characters, pigmentation, preopercular spine pattern, meristic counts, and squamation in later developmental stages is essential to identify Icelinus to the species level. Larvae of northern sculpin have 35–36 myomeres, pelvic fins with one spine and two rays, a bony preopercular shelf, four preopercular spines, 3–14 irregular postanal ventral melanophores, few, if any, melanophores ventrally on the gut, and in larger specimens, two rows of ctenoid scales directly beneath the dorsal fins extending onto the caudal peduncle. The taxonomic characters of the larvae of northern sculpin in this study may help differentiate northern sculpin larvae from its congeners, and other sympatric sculpin larvae, and further aid in solving complex systematic relationships within the family Cottidae.
Resumo:
Data storage tags (DSTs) were applied to Atlantic salmon (Salmo salar L.) smolts during their seaward migration in the spring of 2002 at a fish counting fence on Campbellton River, Newfoundland. Our objectives were to discover whether or not salmon smolts could carry DSTs and survive, whether or not useful data on thermal habitat could be obtained and interpreted, and whether or not salmon smolts moved vertically in the water column. Data were downloaded from 15 of the recovered tags and revealed the hourly water temperatures experienced by the fish for periods of 3 to 71 days. The data on the DSTs were analyzed for temperature patterns in relation to migration behavior and diurnal movement of the fish. While in the sea, the DSTs recorded night temperatures of 12.5°C, which were higher than day temperatures of 11.6°C; the record from moored recorders, however, indicated that sea temperatures actually declined at night. It is hypothesized that posts-molts avoid avian predators during daylight hours by positioning themselves deeper in the water column and that they were pursuing prey during the deeper vertical descents or ascents noted during the periods of more rapid changes in temperature.
Resumo:
Marine ecosystems compose the major source (85%) of world fisheries production (Garcia and Newton, 1997). Although only a few fish species tend to dominate fishery catches (Jennings et al., 2001), a large diversity of fishes representing varied taxonomic levels, ecological guilds, and life histories is commonly taken. Recently, 66% of global marine resources were determined to be either fully, heavily, or over-exploited (Botsford et al., 1997). Considering the current state of many fisheries, the large diversity of species taken globally, and the general lack of resources to adequately assess many stocks, it has become important to develop shortcuts that may provide methods fisheries scientists can use to determine which stocks are in danger of overexploitation and which recovery plans are appropriate when biological data are limited (Stobutzki et al., 2001).