840 resultados para Vision.
Resumo:
This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.
Resumo:
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.
Resumo:
There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results.
Resumo:
ntelligent systems designed to reduce highway fatalities have been widely applied in the automotive sector in the last decade. Of all users of transport systems, pedestrians are the most vulnerable in crashes as they are unprotected. This paper deals with an autonomous intelligent emergency system designed to avoid collisions with pedestrians. The system consists of a fuzzy controller based on the time-to-collision estimate – obtained via a vision-based system – and the wheel-locking probability – obtained via the vehicle’s CAN bus – that generates a safe braking action. The system has been tested in a real car – a convertible Citroën C3 Pluriel – equipped with an automated electro-hydraulic braking system capable of working in parallel with the vehicle’s original braking circuit. The system is used as a last resort in the case that an unexpected pedestrian is in the lane and all the warnings have failed to produce a response from the driver.
Resumo:
A model of the mammalian retina and the behavior of the first layers in the visual cortex is reported. The building blocks are optically programmable logic cells. A model of the retina, similar to the one reported by Dowling (1987) is presented. From the model of the visual cortex obtained, some types of symmetries and asymmetries are possible to be detected
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 10 m. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. The statistical and spectral properties of the resulting observed waves are analyzed. Current improvements of the variational methods are discussed as future lines of research.
Resumo:
One of the most challenging problems that must be solved by any theoretical model purporting to explain the competence of the human brain for relational tasks is the one related with the analysis and representation of the internal structure in an extended spatial layout of múltiple objects. In this way, some of the problems are related with specific aims as how can we extract and represent spatial relationships among objects, how can we represent the movement of a selected object and so on. The main objective of this paper is the study of some plausible brain structures that can provide answers in these problems. Moreover, in order to achieve a more concrete knowledge, our study will be focused on the response of the retinal layers for optical information processing and how this information can be processed in the first cortex layers. The model to be reported is just a first trial and some major additions are needed to complete the whole vision process.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.
Resumo:
Autonomous aerial refueling is a key enabling technology for both manned and unmanned aircraft where extended flight duration or range are required. The results presented within this paper offer one potential vision-based sensing solution, together with a unique test environment. A hierarchical visual tracking algorithm based on direct methods is proposed and developed for the purposes of tracking a drogue during the capture stage of autonomous aerial refueling, and of estimating its 3D position. Intended to be applied in real time to a video stream from a single monocular camera mounted on the receiver aircraft, the algorithm is shown to be highly robust, and capable of tracking large, rapid drogue motions within the frame of reference. The proposed strategy has been tested using a complex robotic testbed and with actual flight hardware consisting of a full size probe and drogue. Results show that the vision tracking algorithm can detect and track the drogue at real-time frame rates of more than thirty frames per second, obtaining a robust position estimation even with strong motions and multiple occlusions of the drogue.
Resumo:
In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from realflight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than wellknown feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
The OMNIWORKS project objective is to develop an autonomous and modular aerial inspection system for an off-shore meteorological mast up to 90m in length. The UAV was equipped with an omni-directional camera and vertical take-off/landing capabilities that should be simple enough to operate as to not need the interventions of a professional pilot under challenging situations. Therefore the tests included different aspects used to evaluate both the technical performance of the UAV behavior as well as the operators? point of view.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
Análisis de la evolución socioeconomica y urbanística de la ciudad de Madrid durante las dos primeras décadas del siglo XXI
Resumo:
The IARC competitions aim at making the state of the art in UAV progress. The 2014 challenge deals mainly with GPS/Laser denied navigation, Robot-Robot interaction and Obstacle avoidance in the setting of a ground robot herding problem. We present in this paper a drone which will take part in this competition. The platform and hardware it is composed of and the software we designed are introduced. This software has three main components: the visual information acquisition, the mapping algorithm and the Aritificial Intelligence mission planner. A statement of the safety measures integrated in the drone and of our efforts to ensure field testing in conditions as close as possible to the challenge?s is also included.