986 resultados para Vibration Characteristics
Resumo:
An attempt has been made to study the effect of time and test procedure on the behaviour of partial discharge (PD) pulses causing failure of oil-pressboard system under power frequency voltages using circular disc shaped samples and uniform field electrodes. Weibull statistics have been used to handle the large amount of PD data. The PD phenomena has been found to be stress and time dependent. On the basis of stress level, three different regions are identified and in one of the regions, the rate of deterioration of the sample is at a maximum. The work presents some interesting features of Weibull parameters as related to the condition of insulation studied in addition to its usual PD characteristics
Resumo:
Most of the structural elements like beams, cables etc. are flexible and should be modeled as distributed parameter systems (DPS) to represent the reality better. For large structures, the usual approach of 'modal representation' is not an accurate representation. Moreover, for excessive vibrations (possibly due to strong wind, earthquake etc.), external power source (controller) is needed to suppress it, as the natural damping of these structures is usually small. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a set of discrete controllers for this purpose. We assume that the control force to the structure is applied through finite number of actuators, which are located at predefined locations in the spatial domain. The method used in this paper determines control forces directly from the partial differential equation (PDE) model of the system. The formulation has better practical significance, both because it leads to a closed form solution of the controller (hence avoids computational issues) as well as because a set of discrete actuators along the spatial domain can be implemented with relative ease (as compared to a continuous actuator)
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
A mathematical model has been developed for predicting the performance of rotating arcs in SF6 gas by considering the energy balance and force balance equations. The finite difference technique has been adopted for the computer simulation of the arc characteristics. This method helps in considering the spatial variation of the transport and radiative properties of the arc. All the three heat loss mechanisms-conduction, convection, and radiation-have been considered. Results obtained over a 10 ms (half cycle of 50 Hz wave) current flow period for 1.4 kA (peak) and 4.2 kA (peak), show that the proposed arc model gives the expected behavior of the arc over the range of currents studied.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Resumo:
A theoretical and experimental study has been carried out on the transient characteristics of a centrifugal pump during starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start up and stopping, when a small length of discharge pipe line is connected to discharge flange of the pump. Similar experiments have also been conducted when the test pump was part of a hydraulic system to study the system effect on the transient characteristics. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump are recorded and it is observed in ail the tested cases that the change of pump behaviour during the transient period is quasi-steady. The dynamic characteristics of the pump have been analysed by a numerical model using the method of characteristics. The model is presented and the results are compared with the experimental data. As the model contains speed acceleration and unsteady discharge terms, the model can be applied for analyses of purely unsteady cases where the pump dynamic characteristics show considerable departure from their steady-state characteristics.
Resumo:
This paper is concerned with the dual head-discharge characteristics of a modified chimney weir. It is shown by an optimization procedure that the modified chimney weir having an inward trapezoidal weir over an inverted V-notch can produce discharges proportional to both the logarithm of the head as well as the linear power of the head reckoned independently over two different reference planes, within a prefixed maximum allowable percentage error from the theoretical discharge. A new technique is adopted to optimize the weir parameters, in order to obtain the maximum ranges of measurement under logarithmic, linear as well as combined characteristics. In the case of linear weir it is shown that it is possible to enhance the linearity range of the chimney weir by more than 540% and for a weir with constant indication accuracy by more than 350%. In addition, about 86% of the overall depth of the designed linear weir and over 90% of the logarithmic weir is converted as the corresponding measurable ranges. Experiments with four typical weirs give consistent constant average coefficient of discharge for each weir confirming the theory. The practical application of the weir in minor irrigation, hydraulic and other engineering fields is highlighted.
Resumo:
Current-potential characteristics are obtained numerically for a lone-adsorbate-mediated anodic charge transfer at the electrode-solution interface. An increase in the overpotential leads to the appearance of maxima in the anodic current-potential plots instead of the extended activationless region (i.e. a saturation current at large positive overpotentials) predicted by the direct heterogeneous outer-sphere anodic charge transfer process. A detailed analysis of the dependence of current-potential profiles and other kinetic parameters on various system parameters is also presented.
Resumo:
Vibration and buckling of curved plates, made of hybrid laminated composite materials, are studied using first-order shear deformation theory and Reissner's shallow shell theory. For an initial study, only simply-supported boundary conditions are considered. The natural frequencies and critical buckling loads are calculated using the energy method (Lagrangian approach) by assuming a combination of sine and cosine functions in the form of double Fourier series. The effects of curvature, aspect ratio, stacking sequence and ply-orientation are studied. The non-dimensional frequencies and critical buckling load of a hybrid laminate lie in between the values for laminates made of all plies of higher strength and lower strength fibres. Curvature enhances natural frequencies and it is more predominant for a thin panel than a thick one.
Resumo:
The jet characteristics and the fluid flow pattern in a continuous slab caster have been studied using a water model. The fluid jet is studied under free fall and submerged discharge conditions. In the latter case, the jet was followed by dye-injection technique and image analyser was used to find out the effect of nozzle parameters on jet-spread angle, jet-discharge angle and the volume entrainment by the jet. All free-fall jets with nozzle port angle zero and upward are found to be spinning. Some of the free-fall jets with downward nozzle-port angle are found to be spinning and rest are smooth. The spinning direction of the jets are found to change with time. The well depth, port diameter and the inner diameter of the nozzle have a clear effect on the free-fall jets with downward port angle. The jet-spread angle is found to be about 17-degrees for smooth jets. The spread angle for spinning jet increases as the nozzle-port angle is increased from downward 25 to upward 15-degrees. The jet-discharge angle is always downward even when the nozzle-discharge ports are angled upward. The extent of volume entrainment by the spinning jet is higher and it increases as the nozzle-port angle is increased from 25 downward to 15-degrees upward.
Resumo:
The various techniques available for the analysis of nonlinear systems subjected to random excitations are briefly introduced and an overview of the progress which has been made in this area of research is presented. The discussion is mainly focused on the basis, scope and limitations of the solution techniques and not on specific applications.
Resumo:
One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
Damage detection by measuring and analyzing vibration signals in a machine component is an established procedure in mechanical and aerospace engineering. This paper presents vibration signature analysis of steel bridge structures in a nonconventional way using artificial neural networks (ANN). Multilayer perceptrons have been adopted using the back-propagation algorithm for network training. The training patterns in terms of vibration signature are generated analytically for a moving load traveling on a trussed bridge structure at a constant speed to simulate the inspection vehicle. Using the finite-element technique, the moving forces are converted into stationary time-dependent force functions in order to generate vibration signals in the structure and the same is used to train the network. The performance of the trained networks is examined for their capability to detect damage from unknown signatures taken independently at one, three, and five nodes. It has been observed that the prediction using the trained network with single-node signature measurement at a suitability chosen location is even better than that of three-node and five-node measurement data.