988 resultados para Vermiculita. Cera de carnaúba. Hidrofobização. Adsorção. Óleo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal methods made heavy oil production possible in fields where primary recovery failed. Throughout the years steam injection became one of the most important alternatives to increase heavy oil recovery. There are many types of steam injection, and one of them is the cyclic steam injection, which has been used with success in several countries, including Brazil. The process involves three phases: firstly, steam is injected, inside of the producing well; secondly, the well is closed (soak period); and finally, the well is put back into production. These steps constitute one cycle. The cycle is repeated several times until economical production limit is reached. Usually, independent of reservoir type, as the number of cycles increases the cyclic injection turns less efficient. This work aims to analyze rock and reservoir property influence in the cyclic steam injection. The objective was to study the ideal number of cycles and, consequently, process optimization. Simulations were realized using the STARS simulator from the CMG group based in a proposed reservoir model. It was observed that the reservoir thickness was the most important parameter in the process performance, whilst soaking time influence was not significant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil industry has several segments that can impact the environment. Among these, produced water which has been highlight in the environmental problem because of the great volume generated and its toxic composition. Those waters are the major source of waste in the oil industry. The composition of the produced water is strongly dependent on the production field. A good example is the wastewater produced on a Petrobras operating unit of Rio Grande do Norte and Ceará (UO-RNCE). A single effluent treatment station (ETS) of this unit receives effluent from 48 wells (onshore and offshore), which leads a large fluctuations in the water quality that can become a complicating factor for future treatment processes. The present work aims to realize a diagnosis of a sample of produced water from the OU - RNCE in compliance to certain physical and physico-chemical parameters (chloride concentration, conductivity, dissolved oxygen, pH, TOG (oil & grease), nitrate concentration, turbidity, salinity and temperature). The analysis of the effluent is accomplished by means of a MP TROLL 9500 Multiparameter probe, a TOG/TPH Infracal from Wilks Enterprise Corp. - Model HATR - T (TOG) and a MD-31 condutivimeter of Digimed. Results were analyzed by univariated and multivariated analysis (principal component analysis) associated statistical control charts. The multivariate analysis showed a negative correlation between dissolved oxygen and turbidity (-0.55) and positive correlations between salinity and chloride (1), conductivity, chloride and salinity (0.70). Multivariated analysis showed there are seven principal components which can explain the variability of the parameters. The variables, salinity, conductivity and chloride were the most important variables, with, higher sampling variance. Statistical control charts have helped to establish a general trend between the physical and chemical evaluated parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground reservoirs of fuel retailing system represent an environmental threat, because once in bad conservation, these tanks allow fuel leakage and infiltration. For soil contaminated with fuel, such as diesel oil, the present study introduces the microemulsion systems used by the method of washing. In tests carried out in column with a sample of sandy soil artificially contaminated and previously characterized as to its void level to porosity, to permeability which is an important parameter concerning the study of the method of washing. While microemulsions were characterized for their viscosity and wettability, a variation of active matter was also done departing from the original formulation. The hydraulic diffusivity of the microemulsion was studied so as the injection of such fluid in a soil with sandy characteristics. The results of the extractions revealed the excellent performance of these systems which get to remove around 95% of diesel fuel. This proves the efficiency of the microemulsion in the process of removal of diesel fuel from the soil with the advantage of being a system easily obtainable and less aggressive to the environment when compared to organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the potential use of smectite clays for color removal of textile effluents. The experiments were performed by testing exploratory/planning method factorial and fractional factorial where the factors and levels are predetermined. The smectite clays were used originating from gypsum hub of the region Araripe-PE, and the dye used was Reactive Yellow BF-4G 200%. The smectite clay was collected and transported to the Laboratory of Soil Physics of UFRPE, where it held its preparation through air drying, lump breaking and classification in sieve to then submit it to the adsorption process. Upon completion of 22 complete factorial design it was concluded that the values of (96, 96,5 and 95,8%) corresponding to the percentage of of removal for "in-kind", chemically and thermally activated, respectively and adsorbed amounts of (4,80, 4,61 and 4,74 mg/g) for three clays. Showed that the activation processes used did not increase the adsorption capacity of smectite clay. The kinetic data were best fitted to the Freundlich isotherm, with an exponential distribution of active sites and that shows above the Langmuir equation for adsorption of cations and anions by clays. The kinetic model that best adapted to the results was the pseudosecond order model. In the factorial design study 24-1, at concentrations up to 500 mg/L obtains high percentage of color removal (92,37, 90,92 and 93,40%) and adsorbed amount (230,94, 227,31 and 233,50 mg/g) for three clays. The kinetic data fitted well to Langmuir and Freundlich isotherms. The kinetic model that best adapted to the results was the pseudosecond order model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work depicts a study of the adsorption of carbon dioxide on zeolite 13X. The activities were divided into four stages: study batch adsorption capacity of the adsorbent with synthetic CO2 (4%), fixed bed dynamic evaluation with the commercial mixture of gases (4% CO2, 1.11% CO, 1 2% H2, 0.233% CH4, 0.1% C3, 0.0233% C4 argon as inert closing balance), fixed bed dynamic modeling and evaluation of the breakthrough curve of CO2 originated from the pyrolysis of sewage sludge. The sewage sludge and the adsorbent were characterized by analysis TG / DTA, SEM, XRF and BET. Adsorption studies were carried out under the following operating conditions: temperature 40 °C (for the pyrolysis of the sludge T = 600 °C), pressures of 0.55 to 5.05 bar (batch process), flow rate of the gaseous mixture between 50 - 72 ml/min and the adsorbent masses of 10, 15 and 20 g (fixed bed process). The time for the adsorption batch was 7 h and on the fixed bed was around 180 min. The results of this study showed that in batch adsorption process step with zeolite 13X is efficient and the mass of adsorbed CO2 increases with the increases pressure, decreases with temperature increases and rises due the increase of activation temperature adsorbent. In the batch process were evaluated the breakthrough curves, which were compared with adsorption isotherms represented by the models of Langmuir, Freündlich and Toth. All models well adjusted to the experimental points, but the Langmuir model was chosen in view of its use in the dynamic model does not have implications for adsorption (indeterminacy and larger number of parameters such as occurred with others) in solving the equation. In the fixed bed dynamic study with the synthetic gas mixture, 20 g of mass adsorbent showed the maximum adsorption percentage 46.7% at 40 °C temperature and 50 mL/min of flow rate. The model was satisfactorily fitted to the three breakthrough curves and the parameters were: axial dispersion coefficient (0.0165 dm2/min), effective diffusivity inside the particle (dm2/min 0.0884) and external transfer coefficient mass (0.45 dm/min). The breakthrough curve for CO2 in the process of pyrolysis of the sludge showed a fast saturation with traces of aerosols presents in the gas phase into the fixed bed under the reaction process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the growth and development of modern society, arises the need to search for new raw materials and new technologies which present the "clean" characteristic, and do not harm the environment, but can join the energy needs of industry and transportation. The Moringa oleifera Lam, plant originating from India, and currently present in the Brazilian Northeast, presents itself as a multi-purpose plant, can be used as a coagulant in water treatment, as a natural remedy and as a feedstock for biodiesel production. In this work, Moringa has been used as a raw material for studies on the extraction and subsequently in the synthesis of biodiesel. Studies have been conducted on various techniques of Moringa oil extraction (solvents, mechanical pressing and enzymatic), being specially developed an experimental design for the aqueous extraction with the aid of the enzyme Neutrase© 0.8 L, with the aim of analyzing the influence variable pH (5.5-7.5), temperature (45-55°C), time (16-24 hours) and amount of catalyst (2-5%) on the extraction yield. In relation to study of the synthesis of biodiesel was initially carried out a conventional transesterification (50°C, KOH as a catalyst, methanol and 60 minutes reaction). Next, a study was conducted using the technique of in situ transesterification by using an experimental design variables as temperature (30-60°C), catalyst amount (2-5%), and molar ratio oil / ethanol (1:420-1:600). The extraction technique that achieved the highest extraction yield (35%) was the one that used hexane as a solvent. The extraction using 32% ethanol obtained by mechanical pressing and extraction reached 25% yield. For the enzymatic extraction, the experimental design indicated that the extraction yield was most affected by the effect of the combination of temperature and time. The maximum yield obtained in this extraction was 16%. After the step of obtaining the oil was accomplished the synthesis of biodiesel by the conventional method and the in situ technique. The method of conventional transesterification was obtained a content of 100% and esters by in situ technique was also obtained in 100% in the experimental point 7, with a molar ratio oil / alcohol 1:420, Temperature 60°C in 5% weight KOH with the reaction time of 1.5 h. By the experimental design, it was found that the variable that most influenced the ester content was late the percentage of catalyst. By physico-chemical analysis it was observed that the biodiesel produced by the in situ method fell within the rules of the ANP, therefore this technique feasible, because does not require the preliminary stage of oil extraction and achieves high levels of esters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A exploração de petróleo está a cada dia em circunstâncias mais adversas, no que diz respeito à profundidade dos poços como também, em relação à fluidez do óleo. Os reservatórios de descobertas recentes não possuem energia própria para produzir ou os métodos convencionais não são eficientes para fazer com que esses reservatórios tenham uma vida útil elevada, devido a alterações das propriedades físico-químicas, como por exemplo a viscosidade, que torna o deslocamento do óleo pelos poros do reservatório até a superfície cada vez mais complexo. O presente trabalho tem como objetivo estudar a preparação, caracterização e a utilização de nanoemulsões obtidas a partir de sistemas microemulsionados, com e sem a presença de polímero. Esses sistemas foram aplicados como método químico de recuperação de petróleo, com o intuito de obter maior eficiência de volume de óleo deslocado. O interesse por esse tipo de sistema existe devido a sua baixa tensão superficial, o pequeno tamanho de gotícula e, principalmente, pelo baixo percentual de matéria ativa presente em sua composição. Os ensaios realizados para caracterizar esses sistemas foram: aspecto físico, medidas de tamanho de gotícula, índice de polidispersão, tensão superficial, pH e condutividade. Ensaios de reologia e de adsorção dos sistemas foram realizados com o objetivo de avaliar sua influencia na recuperação de petróleo. Os ensaios de recuperação foram realizados em um equipamento que simula as condições de um reservatório de petróleo, utilizando plugs de rocha arenito Botucatu. Esses plugs foram saturados com salmoura (KCl 2%) e com petróleo proveniente da Bacia Potiguar do campo de Ubarana. Após essas etapas foi realizada a recuperação convencional utilizando a salmoura e, por último, foi injetada, a nanoemulsão, como método de recuperação avançada. Os sistemas obtidos variaram de 0% à 0,4% de polímero. Os ensaios de tamanhos de partícula obtiveram como resultado uma variação de 9,22 a 14,8 nm, caracterizando que as nanoemulsões estão dentro da faixa de tamanho inerente a esse tipo de sistema. Para ensaios de tensão superficial os valores foram na faixa de 33,6 a 39,7 dynas/cm, valores semelhantes à microemulsões e bem abaixo da tensão superficial da água. Os resultados obtidos para os valores de pH e condutividade se mantiveram estáveis ao longo do tempo de armazenamento, essa avaliação indica estabilidade das nanoemulsões estudadas. O teste de recuperação avançada utilizando nanoemulsão com baixo percentual de matéria ativa obteve como resultado de eficiência de deslocamento 39,4%. Porém esse valor foi crescente, de acordo com o aumento do percentual de polímero na nanomeulsão. Os resultados de eficiência de deslocamento de petróleo estão diretamente relacionados com o aumento da viscosidade das nanoemulsões. A nanoemulsão V (0,4% polímero) é o sistema mais viscoso dentre os analisados, e obteve o maior percentual de óleo deslocado (76,7%), resultando na maior eficiência de deslocamento total (90%). Esse estudo mostrou o potencial de sistemas nanoemulsionados, com e sem polímeros, na recuperação avançada de petróleo. Eles apresentam algumas vantagens com relação a outros métodos de recuperação avançada, como: o baixo percentual de matéria ativa, baixo índice de adsorção do polímero, dissolvido em nanoemulsão, na rocha e alta eficiência de recuperação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se avaliar alternativas de preparo da amostra e os métodos quantitativos para a determinação do teor de óleo em frutos de limão. Os tratamentos foram avaliados por meio do delineamento estatístico inteiramente casualizado, em esquema fatorial 2x2x6, com quatro repetições, sendo duas variedades-copa de limoeiro verdadeiro ('Siciliano' e 'Eureka'), dois métodos analíticos para a determinação do teor de óleo (Scott e Clevenger) e seis formas de preparo dos frutos para análise (análise do fruto inteiro; frutos cortados na longitudinal e análise de ¼; frutos cortados na longitudinal e análise de ¹/2; frutos cortados ao meio e análise da parte superior; frutos cortados ao meio e análise da parte inferior; e análise de ²/8 do fruto). O método denominado de Clevenger foi o mais eficiente na determinação do teor de óleo essencial, e as formas de preparo de amostras ½ inferior, ½ superior, ¼ longitudinal e ½ longitudinal dos frutos proporcionaram valores superiores de óleo essencial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rio Grande do Norte, northeast state from Brazil, it is the greatest producer and exporter of yellow melon, well known as Spanish melon. Despite the consumption of this fruit to be mainly its pulp, melon seeds are an important source of lipids considered an industrial residue it has been discharge product. The use of oilseeds in order to produce biodiesel establishes an important raw material and the increase of its production promotes the national development of the agriculture. In this background, the aim of this work has been to use oil from seeds of yellow melon to produce biodiesel and to accomplish a study of the phase equilibrium of the system evolving biodiesel, methanol and glycerin. The biodiesel was obtained by oil transesterification through methylic route with molar ratio 1:9.7 (oil:alcohol) and with a mass of NaOH of 0.5% from the oil mass; the reaction time was 73 minutes at 55 °C. A yield of 84.94% in biodiesel was achieved. The equilibria data present a well-characterized behavior with a great region of two phases. The tie lines indicate that methanol has a best solubility in the phase that is rich in glycerin. Consistency of the experimental data was made based on Othmer-Tobias and Hand correlations which values above 0.99 were found to correlation coefficients, this fact confers a good thermodynamic consistency to the experimental data. NRTL and UNIQUAC models were employed to predict liquid-liquid equilibrium of this system. It was observed a better concordance of the results when NRTL was applied (standard deviation 1.25%) although the UNIQUAC model has presented a quite satisfactory result either (standard deviation 2.70%). The NRTL and UNIQUAC models were also used to evaluate the effect of temperature in the range of 328 K to 358 K, in which a little change in solubility with respect to the data obtained at 298 K was observed, thus being considered negligible the effect of temperature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, biosorption process was used to remove heavy metals from used automotive lubricating oils by a bus fleet from Natal-RN-Brazil. This oil was characterized to determine the physical-chemistry properties. It was also characterized the used oil with the aim of determining and quantifying the heavy metal concentration. Fe and Cu were the metals existent in large concentration and these metals were choused to be studied in solubilization process. For the biosorption process was used the seaweed Sargassum sp for the study of influencing of the metals presents separately and with other metals. It was also studied the effect of the protonation treatment of alga with the objective to know the best efficiency of heavy metals removal. The study of the solubilization showed that the presence of more than a metal favors the solubilization of the metals presents in the oil and consequently, it favors the biosorption process, what becomes interesting the perspective application in the heavy metals removal in lubricating oils used, because the presence of more than a heavy metal favors the solubility of all metals present. It was observed that the iron and copper metals, which are present in large concentration, the protonated biosorbtent was more effective. In this study we used as biomass the marine alga Sargassum sp to study the influence of agitation velocity, temperature and initial biomass concentration on the removal of iron and copper from used lubricant oils. We performed an experimental design and a kinetic study. The experiments were carried out with samples of used lubricant oil and predetermined amounts of algae, allowing sufficient time for the mixture to obtain equilibrium under controlled conditions. The results showed that, under the conditions studied, the larger the amount of biomass present, the lower the adsorption capacity of the iron and of the copper, likely due to a decrease in interface contact area. The experimental design led us to conclude that a function can be obtained that shows the degree of influence of each one of the system variables

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam assisted gravity drainage process (SAGD) involves two parallel horizontal wells located in a same vertical plane, where the top well is used as steam injector and the bottom well as producer. The dominant force in this process is gravitational. This improved oil recovery method has been demonstrated to be economically viable in commercial projects of oil recovery for heavy and extra heavy oil, but it is not yet implemented in Brazil. The study of this technology in reservoirs with characteristics of regional basins is necessary in order to analyze if this process can be used, minimizing the steam rate demand and improving the process profitability. In this study, a homogeneous reservoir was modeled with characteristics of Brazilian Northeast reservoirs. Simulations were accomplished with STARS , a commercial software from Computer Modelling Group, which is used to simulate improved oil recovery process in oil reservoirs. In this work, a steam optimization was accomplished in reservoirs with different physical characteristics and in different cases, through a technical-economic analysis. It was also studied a semi-continuous steam injection or with injection stops. Results showed that it is possible to use a simplified equation of the net present value, which incorporates earnings and expenses on oil production and expenses in steam requirement, in order to optimize steam rate and obtaining a higher net present value in the process. It was observed that SAGD process can be or not profitable depending on reservoirs characteristics. It was also obtained that steam demand can still be reduced injecting in a non continuous form, alternating steam injection with stops at several time intervals. The optimization of these intervals allowed to minimize heat losses and to improve oil recovery