944 resultados para UV-curing
Resumo:
COMPASS is an experiment at CERN’s SPS whose goal is to study hadron structure and spectroscopy. The experiment includes a wide acceptance RICH detector, operating since 2001 and subject to a major upgrade of the central region of its photodetectors in 2006. The remaining 75% of the photodetection area are still using MWPCs from the original design, who suffer from limitations in gain due to aging of the photocathodes from ion bombardment and due to ion-induced instabilities. Besides the mentioned limitations, the increased luminosity conditions expected for the upcoming years of the experiment make an upgrade to the remaining detectors pertinent. This upgrade should be accomplished in 2016, using hybrid detectors composed of ThGEMs and MICROMEGAS. This work presents the study, development and characterization of gaseous photon detectors envisaging the foreseen upgrade, and the progress in production and evaluation techniques necessary to reach increasingly larger area detectors with the performances required. It includes reports on the studies performed under particle beam environment of such detectors. MPGD structures can also be used in a variety of other applications, of which nuclear medical imaging is a notorious example. This work includes, additionally, the initial steps in simulating, assembling and characterizing a prototype of a gaseous detector for application as a Compton Camera.
Resumo:
Apoptosis is a fundamental feature in the development of many organisms and tissue systems. It is also a mechanism of host defense against environmental stress factors or pathogens by contributing to the elimination of infected cells. Hemocytes play a key role in defense mechanisms in invertebrates and previous studies have shown that physical or chemical stress can increase apoptosis in hemocytes in mollusks. However this phenomenon has rarely been investigated in bivalves especially in the flat oyster Ostrea edulis. The apoptotic response of hemocytes from flat oysters, O. edulis, was investigated after exposure to UV and dexamethasone, two agents known to induce apoptosis in vertebrates. Flow cytometry and microscopy were combined to demonstrate that apoptosis occurs in flat oyster hemocytes. Investigated parameters like intracytoplasmic calcium activity, mitochondrial membrane potential and phosphatidyl-serine externalization were significantly modulated in cells exposed to UV whereas dexamethasone only induced an increase of DNA fragmentation. Morphological changes were also observed on UV-treated cells using fluorescence microscopy and transmission electron microscopy. Our results confirm the apoptotic effect of UV on hemocytes of O. edulis and suggest that apoptosis is an important mechanism developed by the flat oyster against stress factors.
Resumo:
International audience
Resumo:
Many photonic devices are based on waveguides (WG) whose optical properties can be externally modified. These active WGs are usually obtained with electrooptic materials in either the propagating film (core) or the substrate (cladding). In the second case, the WG tunability is based on the interaction of the active material with the evanescent field of the propagating beam.Liquid crystals (LCs) are an excellent choice as electrooptic active materials since they feature high birefringence, low switching voltage, and relatively simple manufacturing. In this work, we have explored alternative ways to prepare WGs of arbitrary shapes avoiding photolithographic steps. To do this, we have employed a UV laser unit (Spectra Physics)attached to an xyzCNC system mounted on an optical bench. The laser power is 300mW, the spot size can be reduced slightly below 1 µm, and the electromechanicalpositioning is well below that number.Different photoresinshave been evaluated for curing time and uniformity; the results have been compared to equivalent WGs realized by standard photolithographic procedures. Best results have been obtained with several kinds of NOA adhesives (Norland Products Inc.) and SU8 (Microchem). NOA81 optical adhesive has been employed by several groups for the preparation ofmicrochannels [1] and microfluidic systems[2]. In our case, several NOAs having different refractive indices have been tested in order to optimize light coupling and guiding. The adhesive is spinnedonto a substrate, and a number of segmented WGs are written with the laser system. The laser power is attenuated 20 dB. Then the laser spot is swept a number of times (from 1 to 900) on every segment. It has been found that, for example, the optimum number of sweeps for NOA81 is 30-70 times (center of the figure) under these conditions. The WG dimensions obtained with this procedure are about 7 µm high and 12 µm wide.
Resumo:
O aumento de consumo de cogumelos tem-se verificado em todo o mundo, não só pelo seu valor nutricional, sabor apurado e textura, mas também pelas suas propriedades medicinais. Existem vários estudos científicos que descrevem os benefícios do consumo de cogumelos, que advêm da sua riqueza em compostos bioativos, tais como micosteróis, em particular, ergosterol. Agaricus bisporus L. é o cogumelo mais consumido em todo o mundo, sendo a sua fração de esteróis constituída essencialmente por ergosterol (90%) [1], tornando a sua extração um tópico de elevado interesse já que esta molécula apresenta elevado valor comercial e inúmeras aplicações nas indústrias alimentar, farmacêutica e cosmética. Segundo a literatura, o teor de ergosterol pode variar entre 3 e 9 mg por g de cogumelo seco. Atualmente, os métodos tradicionais tais como a maceração e a extração em Soxhlet estão a ser substituídos por metodologias emergentes, nomeadamente a extração assistida por microondas, visando diminuir a quantidade de solvente utilizado e o tempo de extração e, naturalmente, aumentar o rendimento da mesma. No presente trabalho, utilizou-se A. bisporus como fonte de ergosterol, tendo-se otimizado as seguintes variáveis relevantes para a sua extração pela tecnologia de microondas (MAE): tempo (0-20 min), temperatura (60-210 ºC) e razão sólido-líquido (1-20 g/L). O solvente utilizado foi o etanol tendo-se aplicado a técnica estatística de superfície de resposta por forma a gerar modelos matemáticos que permitissem maximizar a resposta e otimizar as variáveis que afetam a extração de ergosterol. O conteúdo em ergosterol foi monitorizado por HPLC-UV. Os resultados demonstraram que a técnica MAE é promissora para a extração de ergosterol, tendo-se obtido, para as condições ótimas (20,4 min, 121,5ºC e 1,6 g/L), 569,4 mg ergosterol/100 g de massa seca, valor similar ao obtido com extração convencional por Soxhlet (671,5±0,5 mg/100 g de massa seca). Em síntese, a extração assistida por microondas demonstrou ser uma tecnologia eficiente para maximizar o rendimento de extração em ergosterol.
Resumo:
The biochemistry of cheese ripening involves mechanisms such as glycolysis, proteolysis and lipolysis. Fatty acids are released by the action of lipases from different sources, milk, rennet, bacteria, moulds included as secondary starters, and other exogenous lipases, during lipolysis [1]. The composition of the lipid fraction contributes positively to the flavour of cheese, for being precursors of more complex aroma compounds responsible for the characteristic “goaty flavour” of goat cheeses [2]. Goat milk is recognized by its easier digestibility, alkalinity, buffering capacity and certain therapeutic values in medicine and human nutrition [3]. A high total content of fatty acids is strongly linked to a rancid and tart off flavour in goat milk and may be considered undesirable in most cheese varieties [4]. In this sense, the purpose of the present study was to examine the composition and changes in fatty acids and saponification value of goat cheese during curing period (2, 7 and 12 months). Goat cheese was made in industrial unit of Cachão - Mirandela (Trás-os- Montes) with raw milk Serrana goats’ race, salt and rennet from animal origin. During the first two months, the samples were stored in a ripening chamber (9.5-11 °C and RH 75-85%). From the second month to one year, the samples were stored in a preservation chamber (10.5-12 °C and RH 75-85%). The fatty acids profile of the inner part of the cheese was analyzed by gas-chromatography coupled to flame ionization detection (GC-FID). The degree of saponification was determined both in the crust and inside the cheese by HCl titration of ethanol KOH solution of the samples. Twenty-six fatty acids (FA) were identified and quantified in the inner part of the cheese (total fat was 45-46 g/100 g during the curing period). Saturated fatty acids (SFA) did not change up to 7 months of curing, increasing only after 12 months, being palmitic (C16:0), stearic (C18:0), myristic (C14:0) and capric (C10:0) acids the most abundant FA in this class. Monounsaturated fatty acids (MUFA) decreased only after 12 months, and oleic acid (C18:1) was the predominant FA. In polyunsaturated fatty acids (PUFA) class, the most abundant were linoleic (C18:2) and linolenic (C18:3) acids, and followed the same tendency of MUFA. This is corroborated by an increase in the degree of saponification, either in the crust as in the inner part of the cheese, after 12 months of curing, probably related with the saturation of the fatty acids [3]. Extra-long curing can be done in cheeses produced with goat milk up to seven months of storage without changing the total fat and individual FA content.
Resumo:
Abstract In many parts of the world, corrosion of reinforcing steel in concrete induced by carbonation of the concrete continues to be a major durability concern. This paper investigates the accelerated and natural carbonation resistance of a set of seven concretes, specifically evaluating the effects of internal curing and/or shrinkage/viscosity modifiers on carbonation resistance. In addition to five different ordinary portland cement (OPC) concretes, two concretes containing 20 % of a Class F fly ash as replacement for cement on a mass basis are also evaluated. For all seven concrete mixtures, a good correlation between accelerated (lab) and natural (field) measured carbonation coefficients is observed. Conversely, there is less correlation observed between the specimens’ carbonation resistance and their respective 28 days compressive strengths, with the mixtures containing the shrinkage/viscosity modifier specifically exhibiting an anomalous behavior of higher carbonation resistance at lower strength levels. For both the accelerated and natural exposures, the lowest carbonation coefficients are obtained for two mixtures, one containing the shrinkage/viscosity modifier added in the mixing water and the other containing a solution of the same admixture used to pre-wet fine lightweight aggregate. Additionally, the fly ash mixtures exhibited a significantly higher carbonation coefficient in both exposures than their corresponding OPC concretes.
Resumo:
In the ceramics industry are becoming more predominantly inorganic nature pigments. Studies in this area allow you to develop pigments with more advanced properties and qualities to be used in the industrial context. Studies on synthesis and characterization of cobalt aluminate has been widely researched, cobalt aluminate behavior at different temperatures of calcinations, highlighting especially the temperatures of 700, 800 and 900° C that served as a basis in the development of this study, using the method of polymerization of complex (CPM), economic, and this method applied in ceramic pigment synthesis. The procedure was developed from a fractional factorial design 2 (5-2) in order to optimize the process of realization of the cobalt aluminate (CoAl2O4), having as response surfaces the batch analysis data of Uv-vis spectroscopy conducted from the statistic software 7.0, for this were chosen five factors as input variables: citric acid (stoichiometric manner), puff or pyrolysis time (h), temperature (° C), and calcinations (° C/min), at levels determined for this study. By applying statistics in the process of obtaining the CoAl2O4 is possible the study of these factors and which may have greater influence in getting the synthesis. The pigments characterized TG/DSC analyses, and x-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) in order to establish the structural and morphological aspects of pigment CoAl2O4, among the factors studied it were found to statically with increasing calcinations temperature 700°< 800 <900 °C, the bands of Uv-vis decrease with increasing intensity of absorbance and that with increasing time of puff or pyrolysis (h) there is an increase in bands of Uv-vis proportionally, the generated model set for the conditions proposed in this study because the coefficient of determination can explain about 99.9% of the variance (R²), response surfaces generated were satisfactory, so it s possible applicability in the ceramics industry of pigments
Resumo:
The color stability of resin cements is essential for aesthetic restorations. Aim: To evaluate the influence of shade and aging time on the color stability of two light-cured and two dual-cured resin cements. Methods: The CIE-Lab color parameters (n=6) were measured immediately after sample preparation and at 7, 30 and 90 days of aging in distilled water. The color difference (ΔE) was calculated and then analyzed by three-way ANOVA for repeated measures and Tukey’s HSD test (α=0.05). Results: ΔE was higher for transparent resin colors, followed by dark and light colors. The mean values of ΔE were lower for both light-cured resin cements compared to the dual-cured cements. As the aging time increased, ΔE values increased. Conclusions: The light-cured resin cements showed greater color stability. The lighter shades of luting were more likely to display a greater color change.
Resumo:
UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
El aguacate (Persea americana Miller) es una conocida fruta arb´orea con un alto contenido nutricional que crece en varias partes del mundo. El presente estudio compara los espectros del UV-Vis y del espectr´ometro infrarrojo con transformada de Fourier (FTIR) de la fruta y de la hoja de aguacate (c´ascara, pulpa y aceite) cultivado en Ecuador y posteriormente eval´ua su actividad antioxidante empleando el 1,1-difenil-2-picrilhidrazil (DPPH•). El estudio de los espctros UV-Vis y FTIR revel´o que el aguacate tiene predominantemente flavonoides. Entre la hoja y el fruto del aguacate, se comprob´o mediante el ensayo DPPH• (captura de radicales libres), que la hoja tuvo una mayor actividad antioxidante, la que oscila entre 84,46% y 80,12%, con valores de 32.60-32.73 μg equivalentes de ´acido g´alico por mL. Se demostr´o que el orden de la actividad antioxidante de los extractos es: hoja de aguacate > c´ascara > aceite > pulpa. La actividad antioxidante tuvo una correlaci´on positiva con el contenido total de flavonoides y estos extractos de plantas (especialmente de las hojas del aguacate) son ´utiles para el desarrollo de futuros productos antioxidantes.