952 resultados para Total electron content (TEC)
Resumo:
This work evaluated the fresh, spray dried (with 10 % of Arabic Gum) and freeze dried jambolan pulp (Eugenia jambolana Lam.) in regard to physicochemical (pH, moisture, water activity, average particle diameter, solubility and color), bioactive [total phenolic content (TPC), monomeric anthocyanin, pronathocyanidin (PA), total elagic acid (TEA), myricetin and cyanidin] and in vitro functionality (antioxidant, antienzymatic and antimicrobial activities]. In addition, the in vivo functionality of jambolan pulp was investigated using the Caenorhabditis elegans model for insulin signaling, longevity and induced neurodegeneration (Alzheimer’s disease and Parkinson’s disease related symptoms). The dried jambolan pulp presented TPC retention (50% to 75%), PA (90% to 98%), TEA (31% to 83%), myricetin (40% to 84%), cyanidin (72% to 84%) and antioxidant activity (15%). The fresh jambolan pulp, the freeze dried pulp and the spray dried jambolan pulp presented high enzymatic inhibitory activity against pancreatic lipase (4,4 to 5,8 mg/mL), alpha-glycosidase (10,3 to 13,8 mg/mL) and alpha-amylase (8,9 to 11,2 mg/mL). They also were active inhibitors against the pathogen S. aureus. The dried jambolan experimental samples were able to increase the expression of several genes linked to the insulin signaling pathways (SIR-2.1, PPTR-1, DAF-16, SOD-3, e CTL) and increased the lifespan in C. elegans (18,07 % - 24,34 %), besides decreasing the amyloid AB1-42 aggregation induced paralysis and MPP+ (1-methyl-4-phenylpyridinium) induced neurodegeneration. Based on that, the jambolan pulp and the spray dried jambolan pulp were further selected for the production of caprine frozen yogurt with the addition of Bifidobacterium animalis subsp. lactis BI-07. The final product were evaluated in regard to their physicochemical (pH, acidity, total solids, protein, total reducing sugars, fat, ashes, overrun, melting test), bioactive (TPC and monomeric anthocyanin, antioxidant activity, probiotic viability and sensory analysis (sensory acceptance). The results showed that samples with probiotic had lowest pH and higher acidity, TPC, anthocyanin and antioxidant activity. It was also observed low overrun (14.2% to 22.6%). vi Samples with probiotic had lower flavor scores. Overall, this research presents the jambolan as a highly functional bioactive-rich fruit with the potential to modulate important biological pathways, extend lifespan and retard the development of neurodegenerative diseases. Jambolan is an underexploited exotic fruit with a high colorant potential and this thesis shows for the first time in the literature important technological, biological and scientific data about this fruit that could be used towards the development of health-oriented food products.
Resumo:
The use of plants for medicinal purposes is ancient, with widespread application in medicinal drugs. Although plants are promising sources for the discovery of new molecules of pharmacological interest, estimates show that only 17% of them have been studied for their possible use in medicine. Thus, biodiversity of Brazilian flora represents an immense potential for economic use by the pharmaceutical industry. The plant Arrabidaea chica, popularly known as “pariri”, is common in the Amazon region, and it is assigned several medicinal properties. The leaves of this plant are rich in anthocyanins, which are phenolic compounds with high antioxidant power. Antioxidant compounds play a vital role in the prevention of neurological and cardiovascular diseases, cancer and diabetes, among others. Within the anthocyanins found in Arrabidaea chica, stands out Carajurin (6,7-dihydroxy-5,4’- dimethoxy-flavilium), which is the major pigment encountered in this plant. The present work aimed to study on supercritical extraction and conventional extraction (solid-liquid extraction) in leaves of Arrabidaea chica, evaluating the efficiency of the extractive processes, antioxidant activity and quantification of Carajurin contained in the extracts. Supercritical extraction used CO2 as solvent with addition of co-solvent (ethanol/water mixture) and were conducted by the dynamic method in a fixed bed extractor. The trials followed a 24-1 fractional factorial design, the dependent variables were: process yield, concentration of Carajurin and antioxidant activity; and independent variables were: pressure, temperature, concentration of co-solvent (v/v) and concentration of water in the co-solvent mixture (v/v). Yields (mass of dry extract/mass of raw material used) obtained from supercritical extraction ranged from 15.1% to 32%, and the best result was obtained at 250 bar and 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 50%. Through statistical analysis, it was found that the concentration of co-solvent revealed significant effect on the yield. Yields obtained from conventional extractions were of 8.1% (water) and 5.5% (ethanol). Through HPLC (High-performance liquid chromatography) analysis, Carajurin was quantified in all the extracts and concentration values (Carajurin mass/mass of dry extract) ranged between 1% and 2.21% for supercritical extraction. For conventional extraction, Carajurin was not detected in the aqueous extract, while the ethanol extract showed Carajurin content of 7.04%, and therefore, more selective in Carajurin than the supercritical extraction. Evaluation of antioxidant power (radical 2,2-diphenyl-1-picrylhydrazyl – DPPH – sequestration method) of the supercritical extracts resulted in EC50 values (effective concentration which neutralizes 50% of free radicals) ranged from 38.34 to 86.13 μg/mL, while conventional extraction resulted in EC50 values of 167.34 (water) and 42.58 (ethanol) μg/mL. As for the quantification of total phenolic content (Folin-Ciocalteau analysis) of the supercritical extracts resulted in values ranged from 48.93 and 88.62 mg GAE/g extract (GAE = Gallic Acid Equivalents), while solid-liquid extraction resulted in values of 37.63 (water) and 80.54 (ethanol) mg GAE/g extract. The good antioxidant activity cannot be attributed solely to the presence of Carajurin, but also the existence of other compounds and antioxidants in Arrabidaea chica. By optimizing the experimental design, it was possible to identify the experiment that presented the best result considering the four dependent variables together. This experiment was performed under the following conditions: pressure of 200 bar, temperature of 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 30%. It is concluded that, within the studied range, it is possible to purchase the optimum result using milder operating conditions, which implies lower costs and greater ease of operation.
Resumo:
Living microorganisms inhabit every environment of the biosphere but only in the last decades their importance governing biochemical cycles in deep sediments has been widely recognized. Most investigations have been accomplished in the marine realm whereas there is a clear paucity of comparable studies in lacustrine sediments. One of the main challenges is to define geomicrobiological proxies that can be used to identify different microbial signals in the sediments. Laguna Potrok Aike, a maar lake located in Southeastern Patagonia, has an annually not stratifying cold water column with temperatures ranging between 4 and 10 °C, and most probably an anoxic water/sediment interface. These unusual features make it a peculiar and interesting site for geomicrobiological studies. Living microbial activity within the sediments was inspected by the first time in a sedimentary core retrieved during an ICDP-sponsored drilling operation. The main goals to study this cold subsaline environment were to characterize the living microbial consortium; to detect early diagenetic signals triggered by active microbes; and to investigate plausible links between climate and microbial populations. Results from a meter long gravity core suggest that microbial activity in lacustrine sediments can be sustained deeper than previously thought due to their adaptation to both changing temperature and oxygen availability. A multi-proxy study of the same core allowed defining past water column conditions and further microbial reworking of the organic fraction within the sediments. Methane content shows a gradual increase with depth as a result of the fermentation of methylated substrates, first methanogenic pathway to take place in the shallow subsurface of freshwater and subsaline environments. Statistical analyses of DGGE microbial diversity profiles indicate four clusters for Bacteria reflecting layered communities linked to the oxidant type whereas three clusters characterize Archaea communities that can be linked to both denitrifiers and methanogens. Independent sedimentary and biological proxies suggest that organic matter production and/or preservation have been lower during the Medieval Climate Anomaly (MCA) coinciding with a low microbial colonization of the sediments. Conversely, a reversed trend with higher organic matter content and substantial microbial activity characterizes the sediments deposited during the Little Ice Age (LIA). Thus, the initial sediments deposited during distinctive time intervals under contrasting environmental conditions have to be taken into account to understand their impact on the development of microbial communities throughout the sediments and their further imprint on early diagenetic signals.
Resumo:
The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.
Resumo:
The fatty acid (FA) composition of representatives belonging to 18 polychaete families from the Southern Ocean shelf and deep sea (600 to 5337 m) was analysed in order to identify trophic biomarkers and elucidate possible feeding preferences. Total FA content was relatively low with few exceptions and ranged from 1.0 to 11.6% of total body dry weight. The most prominent FA found were 20:5(n-3), 16:0, 22:6(n-3), 18:1(n-7), 20:4(n-6), 18:0, 20:1(n-11) and 18:1(n-9). For some polychaete families and species FA profiles indicated selective feeding on certain dietary components, like freshly deposited diatom remains (e.g., Spionidae, Fauveliopsidae and Flabelligeridae) or foraminiferans (e.g., Euphrosinidae, Nephtyidae and Syllidae). Feeding patterns were relatively consistent within families at the deep stations, while the FA composition differed between the deep and the shelf stations within the same family. Fatty alcohols, indicative of wax ester storage, were found in almost all families (in proportions of 0.0 to 29.3% of total FA and fatty alcohols). The development of this long-term storage mechanism of energy reserves possibly displays an evolutionary strategy.
Resumo:
Distribution of iron and manganese speciations in ocean sediments of a section from the coast of Japan to the open Pacific Ocean is under consideration. Determinations of total iron, as well as of reactive iron contents and of total manganese, as well as of Mn4+ contents have been done. Significant increase of total Fe content in sediments from the coast to the pelagic zone occurs without noticeable increase in reactive Fe content. Presence of layers of volcanic and terrigenous coarse clastic material in clayey sediments results to sharp change in iron content. Manganese content increases from near coastal to pelagic sediments more than 10 times; oxidation degree of sediments also increases. There are three types of bottom sediments different by contents of iron and manganese forms: reduced, oxidized (red clay), and transitional. Content of total Fe is almost does not change with depth in sediments, content of reactive Fe increases in reduced sediments, and decreases in oxidized ones. Manganese content in red clay mass increases several times.
Resumo:
We present the results of electrical resistivity, magnetic susceptibility, specific heat and x-ray absorption spectroscopy measurements in Tb1−xYxRhIn5 (x = 0.00, 0.15, 0.4.0, 0.50 e 0.70) single crystals. Tb1−xYxRhIn5 is an antiferromagnetic AFM compound with ordering temperature TN ≈ 46 K, the higher TN within the RRhIn5 serie (R : rare earth). We evaluate the physical properties evolution and the supression of the AFM state considering doping and Crystalline Electric Field (CEF) effects on magnetic exchange interaction between Tb3+ magnetic ions. CEF acts like a perturbation potential, breaking the (2J + 1) multiplet s degeneracy. Also, we studied linear-polarization-dependent soft x-ray absorption at Tb M4 and M5 edges to validate X-ray Absorption Spectroscopy as a complementary technique in determining the rare earth CEF ground state. Samples were grown by the indium excess flux and the experimental data (magnetic susceptibility and specific heat) were adjusted with a mean field model that takes account magnetic exchange interaction between first neighbors and CEF effects. XAS experiments were carried on Total Electron Yield mode at Laborat´onio Nacional de Luz S´ıncrotron, Campinas. We measured X-ray absorption at Tb M4,5 edges with incident polarized X-ray beam parallel and perpendicular to c-axis (E || c e E ⊥ c). The mean field model simulates the mean behavior of the whole system and, due to many independent parameters, gives a non unique CEF scheme. XAS is site- and elemental- specific technique and gained the scientific community s attention as complementary technique in determining CEF ground state in rare earth based compounds. In this work we wil discuss the non conclusive results of XAS technique in TbRhIn5 compounds.
Resumo:
Oceanic anoxic events (OAEs) were episodes of widespread marine anoxia during which large amounts of organic carbon were buried on the ocean floor under oxygen-deficient bottom waters (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). OAE2, occurring at the Cenomanian/Turonian boundary (about 93.5 Myr ago) (Gradstein et al., 2004), is the most widespread and best defined OAE of the mid-Cretaceous. Although the enhanced burial of organic matter can be explained either through increased primary productivity or enhanced preservation scenarios (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). the actual trigger mechanism, corresponding closely to the onset of these episodes of increased carbon sequestration, has not been clearly identified. It has been postulated that large-scale magmatic activity initially triggered OAE2 (Sinton and Duncan, 1997; Kerr, 1998, doi:10.1144/gsjgs.155.4.0619), but a direct proxy of magmatism preserved in the sedimentary record coinciding closely with the onset of OAE2 has not yet been found. Here we report seawater osmium isotope ratios in organic-rich sediments from two distant sites. We find that at both study sites the marine osmium isotope record changes abruptly just at or before the onset of OAE2. Using a simple two-component mixing equation, we calculate that over 97 per cent of the total osmium content in contemporaneous seawater at both sites is magmatic in origin, a ~30-50-fold increase relative to pre-OAE conditions. Furthermore, the magmatic osmium isotope signal appears slightly before the OAE2 -as indicated by carbon isotope ratios- suggesting a time-lag of up to ~23 kyr between magmatism and the onset of significant organic carbon burial, which may reflect the reaction time of the global ocean system. Our marine osmium isotope data are indicative of a widespread magmatic pulse at the onset of OAE2, which may have triggered the subsequent deposition of large amounts of organic matter.
Resumo:
Organic carbon occluded in diatom silica is assumed to be protected from degradation in the sediment. d13C from diatom carbon (d13C(diatom)) therefore potentially provides a signal of conditions during diatom growth. However, there have been few studies based on d13C(diatom). Numerous variables can influence d13C of organic matter in the marine environment (e.g., salinity, light, nutrient and CO2 availability). Here we compare d13C(diatom) and d13C(TOC) from three sediment records from individual marine inlets (Rauer Group, East Antarctica) to (i) investigate deviations between d13C(diatom) and d13C(TOC), to (ii) identify biological and environmental controls on d13C(diatom) and d13C(TOC), and to (iii) discuss d13C(diatom) as a proxy for environmental and climate reconstructions. The records show individual d13C(diatom) and d13C(TOC) characteristics, which indicates that d13C is not primarily controlled by regional climate or atmospheric CO2 concentration. Since the inlets vary in water depths offsets in d13C are probably related to differences in water column stratification and mixing, which influences redistribution of nutrients and carbon within each inlet. In our dataset changes in d13C(diatom) and d13C(TOC) could not unequivocally be ascribed to changes in diatom species composition, either because the variation in d13C(diatom) between the observed species is too small or because other environmental controls are more dominant. Records from the Southern Ocean show depleted d13C(diatom) values (1-4 per mil) during glacial times compared to the Holocene. Although climate variability throughout the Holocene is low compared to glacial/interglacial variability, we find variability in d13C(diatom), which is in the same order of magnitude. d13C of organic matter produced in the costal marine environment seems to be much more sensitive to environmental changes than open ocean sites and d13C is of strongly local nature.
Resumo:
Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.
Resumo:
Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced and reflected an oleoyl-CoA substrate preference. Effect on the total FAME content was moderate and elevated by a maximum of 38%. Expression of the DGA1 transgene varied throughout the culture life cycle and evidence of growth dependent environmental silencing of the transgene was observed. This is to our knowledge the first example of silencing and subsequent resetting in a transgenic microalga. Results from this study add valuable insights into the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for chemical manufacture.
Resumo:
Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced and reflected an oleoyl-CoA substrate preference. Effect on the total FAME content was moderate and elevated by a maximum of 38%. Expression of the DGA1 transgene varied throughout the culture life cycle and evidence of growth dependent environmental silencing of the transgene was observed. This is to our knowledge the first example of silencing and subsequent resetting in a transgenic microalga. Results from this study add valuable insights into the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for chemical manufacture.
Resumo:
Dans la région de Trois-Rivières (Québec, Canada), plus de 1 000 bâtiments résidentiels et commerciaux montrent de graves problèmes de détérioration du béton. Les problèmes de détérioration sont liés à l’oxydation des sulfures de fer incorporés dans le granulat utilisé pour la confection du béton. Ce projet de doctorat vise à mieux comprendre les mécanismes responsables de la détérioration de béton incorporant des granulats contenant des sulfures de fer, et ce afin de développer une méthodologie pour évaluer efficacement la réactivité potentielle de ce type de granulats. Un examen pétrographique détaillé de carottes de béton extraites de fondations résidentielles montrant différents degré d’endommagement a été réalisé. Le granulat problématique contenant des sulfures de fer a été identifié comme un gabbro à hypersthène incorporant différentes proportions (selon les différentes localisations dans les deux carrières d’origine) de pyrrhotite, pyrite, chalcopyrite et pentlandite. Les produits de réaction secondaires observés dans les échantillons dégradés comprennent des formes minérales de "rouille", gypse, ettringite et thaumasite. Ces observations ont permis de déterminer qu’en présence d’eau et d’oxygène, la pyrrhotite s’oxyde pour former des oxyhydroxides de fer et de l’acide sulfurique qui provoquent une attaque aux sulfates dans le béton. Tout d’abord, la fiabilité de l’approche chimique proposée dans la norme européenne NF EN 12 620, qui consiste à mesurer la teneur en soufre total (ST,% en masse) dans le granulat pour détecter la présence (ou non) de sulfures de fer, a été évaluée de façon critique. Environ 50% (21/43) des granulats testés, représentant une variété de types de roches/lithologies, a montré une ST > 0,10%, montrant qu’une proportion importante de types de roches ne contient pas une quantité notable de sulfure, qui, pour la plupart d’entre eux, sont susceptibles d’être inoffensifs dans le béton. Ces types de roches/granulats nécessiteraient toutefois d’autres tests pour identifier la présence potentielle de pyrrhotite compte tenu de la limite de ST de 0,10 % proposée dans les normes européennes. Basé sur une revue exhaustive de la littérature et de nombreuses analyses de laboratoire, un test accéléré d’expansion sur barres de mortier divisé en deux phases a ensuite été développé pour reproduire, en laboratoire, les mécanismes de détérioration observés à Trois-Rivières. Le test consiste en un conditionnement de 90 jours à 80°C/80% RH, avec 2 cycles de mouillage de trois heures chacun, par semaine, dans une solution d’hypochlorite de sodium (eau de javel) à 6% (Phase I), suivi d’une période pouvant atteindre 90 jours de conditionnement à 4°C/100 % HR (Phase II). Les granulats ayant un potentiel d’oxydation ont présenté une expansion de 0,10 % au cours de la Phase I, tandis que la formation potentielle de thaumasite est détectée par le regain rapide de l’expansion suivi par la destruction des échantillons durant la Phase II. Un test de consommation d’oxygène a également été modifié à partir d’un test de Drainage Minier Acide, afin d’évaluer quantitativement le potentiel d’oxydation des sulfures de fer incorporés dans les granulats à béton. Cette technique mesure le taux de consommation d’oxygène dans la partie supérieure d’un cylindre fermé contenant une couche de matériau compacté afin de déterminer son potentiel d’oxydation. Des paramètres optimisés pour évaluer le potentiel d’oxydation des granulats comprennent une taille de particule inférieure à 150 μm, saturation à 40 %, un rapport de 10 cm d’épaisseur de granulat par 10 cm de dégagement et trois heures d’essai à 22ᵒC. Les résultats obtenus montrent que le test est capable de discriminer les granulats contenant des sulfures de fer des granulats de contrôle (sans sulfures de fer) avec un seuil limite fixé à 5% d’oxygène consommé. Finalement, un protocole d’évaluation capable d’estimer les effets néfastes potentiels des granulats à béton incorporant des sulfures de fer a été proposé. Le protocole est divisé en 3 grandes phases: (1) mesure de la teneur en soufre total, (2) évaluation de la consommation d’oxygène, et (3) un test accéléré d’expansion sur barres de mortier. Des limites provisoires sont proposées pour chaque phase du protocole, qui doivent être encore validées par la mise à l’essai d’un plus large éventail de granulats.
Resumo:
Nos últimos anos, tem-se assistido a um crescimento no interesse do estudo da ressuspensão de pó de estrada, dado o reconhecimento da importância que esta fração representa para os níveis de partículas atmosféricas em ambiente urbano. Dada a prematuridade deste tema e, de forma a compreender e conhecer a sua contribuição e caracterização, realizou-se um estudo sobre a ressuspensão de pó de estrada urbano para as cidades do Porto e Braga. No âmbito do projeto AIRUSE e URBE, realizaram-se amostragens de PM10 no terreno com um dispositivo de amostragem móvel e em ambiente laboratorial com uma câmara de ressuspensão, sendo posteriormente analisado o seu conteúdo carbonoso por um sistema de análise termo-ótico de transmitância e, os elementos por ICP-MS e ICP-AES. Da campanha in situ resultaram cargas de PM10 compreendidas entre 0.190 e 49.5 mg.m-2 para a cidade do Porto e 0.577 mg.m-2 para o túnel rodoviário em Braga. As amostras caracterizam-se por serem dominadas pelos elementos Al, Fe, K, e Ca e conterem enriquecimentos de Sb, Fe, Cu, Sn e Zn, fruto da contaminação antropogénica da atividade rodoviária. No que respeita às amostragens em laboratório, utilizou-se uma câmara de ressuspensão e o dispositivo móvel aplicado na campanha anteriormente descrita para estudar e caracterizar a fração PM10 do pó de estrada urbano proveniente do Túnel Avenida da Liberdade (Braga). Os resultados obtidos para as duas metodologias foram de um modo geral similares, com o carbono total a representar cerca de 6% da massa total de PM10. Esta última é composta maioritariamente por Al, Fe, Ca e K, elementos característicos da crosta terrestre. Quanto ao fatores de enriquecimento calculados, denotou-se a presença de Sb, Zn, Cu e Sn, tendo-se associando ao desgaste dos travões e pneus.