925 resultados para Testicular regression
Resumo:
Histopathologic determination of tumor regression provides important prognostic information for locally advanced gastroesophageal carcinomas after neoadjuvant treatment. Regression grading systems mostly refer to the amount of therapy-induced fibrosis in relation to residual tumor or the estimated percentage of residual tumor in relation to the former tumor site. Although these methods are generally accepted, currently there is no common standard for reporting tumor regression in gastroesophageal cancers. We compared the application of these 2 major principles for assessment of tumor regression: hematoxylin and eosin-stained slides from 89 resection specimens of esophageal adenocarcinomas following neoadjuvant chemotherapy were independently reviewed by 3 pathologists from different institutions. Tumor regression was determined by the 5-tiered Mandard system (fibrosis/tumor relation) and the 4-tiered Becker system (residual tumor in %). Interobserver agreement for the Becker system showed better weighted κ values compared with the Mandard system (0.78 vs. 0.62). Evaluation of the whole embedded tumor site showed improved results (Becker: 0.83; Mandard: 0.73) as compared with only 1 representative slide (Becker: 0.68; Mandard: 0.71). Modification into simplified 3-tiered systems showed comparable interobserver agreement but better prognostic stratification for both systems (log rank Becker: P=0.015; Mandard P=0.03), with independent prognostic impact for overall survival (modified Becker: P=0.011, hazard ratio=3.07; modified Mandard: P=0.023, hazard ratio=2.72). In conclusion, both systems provide substantial to excellent interobserver agreement for estimation of tumor regression after neoadjuvant chemotherapy in esophageal adenocarcinomas. A simple 3-tiered system with the estimation of residual tumor in % (complete regression/1% to 50% residual tumor/>50% residual tumor) maintains the highest reproducibility and prognostic value.
Resumo:
BACKGROUND Recently, histopathological tumour regression, prevalence of signet ring cells, and localisation were reported as prognostic factors in neoadjuvantly treated oesophagogastric (junctional and gastric) cancer. This exploratory retrospective study analyses independent prognostic factors within a large patient cohort after preoperative chemotherapy including clinical and histopathological factors. METHODS In all, 850 patients presenting with oesophagogastric cancer staged cT3/4 Nany cM0/x were treated with neoadjuvant chemotherapy followed by resection in two academic centres. Patient data were documented in a prospective database and retrospectively analysed. RESULTS Of all factors prognostic on univariate analysis, only clinical response, complications, ypTNM stage, and R category were independently prognostic (P<0.01) on multivariate analysis. Tumour localisation and signet ring cells were independently prognostic only when investigator-dependent clinical response evaluation was excluded from the multivariate model. Histopathological tumour regression correlates with tumour grading, Laurén classification, clinical response, ypT, ypN, and R categories but was not identified as an independent prognostic factor. Within R0-resected patients only surgical complications and ypTNM stage were independent prognostic factors. CONCLUSIONS Only established prognostic factors like ypTNM stage, R category, and complications were identified as independent prognostic factors in resected patients after neoadjuvant chemotherapy. In contrast, histopathological tumour regression was not found as an independent prognostic marker.
Resumo:
Graphical display of regression results has become increasingly popular in presentations and in scientific literature because graphs are often much easier to read than tables. Such plots can be produced in Stata by the marginsplot command (see [R] marginsplot). However, while marginsplot is versatile and flexible, it has two major limitations: it can only process results left behind by margins (see [R] margins), and it can handle only one set of results at a time. In this article, I introduce a new command called coefplot that overcomes these limitations. It plots results from any estimation command and combines results from several models into one graph. The default behavior of coefplot is to plot markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce other types of graphs. I illustrate the capabilities of coefplot by using a series of examples.
Resumo:
The counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.
Resumo:
estout, introduced by Jann (Stata Journal 5: 288–308), is a useful tool for producing regression tables from stored estimates. However, its syntax is relatively complex and commands may turn out long even for simple tables. Furthermore, having to store the estimates beforehand can be cumbersome. To facilitate the production of regression tables, I therefore present here two new commands called eststo and esttab. eststo is a wrapper for offcial Stata’s estimates store and simplifies the storing of estimation results for tabulation. esttab, on the other hand, is a wrapper for estout and simplifies compiling nice-looking tables from the stored estimates without much typing. I also provide updates to estout and estadd.
Resumo:
Organizing and archiving statistical results and processing a subset of those results for publication are important and often underestimated issues in conducting statistical analyses. Because automation of these tasks is often poor, processing results produced by statistical packages is quite laborious and vulnerable to error. I will therefore present a new package called estout that facilitates and automates some of these tasks. This new command can be used to produce regression tables for use with spreadsheets, LaTeX, HTML, or word processors. For example, the results for multiple models can be organized in spreadsheets and can thus be archived in an orderly manner. Alternatively, the results can be directly saved as a publication-ready table for inclusion in, for example, a LaTeX document. estout is implemented as a wrapper for estimates table but has many additional features, such as support for mfx. However, despite its flexibility, estout is—I believe—still very straightforward and easy to use. Furthermore, estout can be customized via so-called defaults files. A tool to make available supplementary statistics called estadd is also provided.
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.
Resumo:
In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.
Resumo:
robreg provides a number of robust estimators for linear regression models. Among them are the high breakdown-point and high efficiency MM-estimator, the Huber and bisquare M-estimator, and the S-estimator, each supporting classic or robust standard errors. Furthermore, basic versions of the LMS/LQS (least median of squares) and LTS (least trimmed squares) estimators are provided. Note that the moremata package, also available from SSC, is required.
Resumo:
Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest.
Resumo:
We consider the problem of nonparametric estimation of a concave regression function F. We show that the supremum distance between the least square s estimatorand F on a compact interval is typically of order(log(n)/n)2/5. This entails rates of convergence for the estimator’s derivative. Moreover, we discuss the impact of additional constraints on F such as monotonicity and pointwise bounds. Then we apply these results to the analysis of current status data, where the distribution function of the event times is assumed to be concave.
Resumo:
Let Y_i = f(x_i) + E_i\ (1\le i\le n) with given covariates x_1\lt x_2\lt \cdots\lt x_n , an unknown regression function f and independent random errors E_i with median zero. It is shown how to apply several linear rank test statistics simultaneously in order to test monotonicity of f in various regions and to identify its local extrema.