973 resultados para Teorema Egregium de Gauss
Resumo:
Lo scopo di questa tesi è di studiare i principali risultati riguardanti le estensioni trascendenti di campi, l'indipendenza algebrica di elementi trascendenti su un campo, le basi di trascendenza di un'estensione. A partire da questi risultati vengono dimostrati due importanti teoremi di geometria algebrica: il Teorema degli zeri di Hilbert e il Teorema di Lüroth.
Resumo:
Un sistema sottoposto ad una lenta evoluzione ciclica è descritto da un'Hamiltoniana H(X_1(t),...,X_n(t)) dipendente da un insieme di parametri {X_i} che descrivono una curva chiusa nello spazio di appartenenza. Sotto le opportune ipotesi, il teorema adiabatico ci garantisce che il sistema ritornerà nel suo stato di partenza, e l'equazione di Schrödinger prevede che esso acquisirà una fase decomponibile in due termini, dei quali uno è stato trascurato per lungo tempo. Questo lavoro di tesi va ad indagare principalmente questa fase, detta fase di Berry o, più in generale, fase geometrica, che mostra della caratteristiche uniche e ricche di conseguenze da esplorare: essa risulta indipendente dai dettagli della dinamica del sistema, ed è caratterizzata unicamente dal percorso descritto nello spazio dei parametri, da cui l'attributo geometrico. A partire da essa, e dalle sue generalizzazioni, è stata resa possibile l'interpretazione di nuovi e vecchi effetti, come l'effetto Aharonov-Bohm, che pare mettere sotto una nuova luce i potenziali dell'elettromagnetismo, e affidare loro un ruolo più centrale e fisico all'interno della teoria. Il tutto trova una rigorosa formalizzazione all'interno della teoria dei fibrati e delle connessioni su di essi, che verrà esposta, seppur in superficie, nella parte iniziale.
Resumo:
Questa tesi nasce dal voler approfondire lo studio delle curve piane di grado 3 iniziato nel corso di Geometria Proiettiva. In particolare si andrà a studiare la legge di gruppo che si può definire su tali curve e i punti razionali di ordine finito appartenenti alle curve ellittiche. Nel primo capitolo si parla di equazioni diofantee, dell’Ultimo Teorema di Fermat, dell'equazione e della formula di duplicazione di Bachet. Si parla inoltre dello stretto rapporto tra la geometria, l'algebra e la teoria dei numeri nella teoria delle curve ellittiche e come le curve ellittiche siano importanti nella crittografia. Nel secondo capitolo vengono enunciate alcune definizioni, proposizioni e teoremi, riguardanti polinomi e curve ellittiche. Nel terzo capitolo viene introdotta la forma normale di una cubica. Nel quarto capitolo viene descritta la legge di gruppo su una cubica piana non singolare e la costruzione geometrica che porta ad essa; si vede il caso particolare della legge di gruppo per una cubica razionale in forma normale ed inoltre si ricavano le formule esplicite per la somma di due punti appartenenti ad una cubica. Nel capitolo cinque si iniziano a studiare i punti di ordine finito per una curva ellittica con la legge di gruppo dove l'origine è un flesso: vengono descritti e studiati i punti di ordine 2 e quelli di ordine 3. Infine, nel sesto capitolo si studiano i punti razionali di ordine finito qualsiasi: viene introdotto il concetto di discriminante di una cubica e successivamente viene enunciato e dimostrato il teorema di Nagell-Lutz.
Resumo:
Nella tesi si intende ricolorare alcune porzioni di un'immagine delle quali è nota soltanto la scala dei grigi. Il colore viene considerato nello spazio RGB e decomposto in cromaticità e luminosità. Il problema viene espresso come problema di minimo di un funzionale detto di ``Total Variation'', definito sulle funzioni a variazione limitata BV. Si introduce la nozione di funzione BV di R^n, le principali proprietà di queste funzioni e in particolare si enuncia un teorema di compattezza. Si utilizzano infine tali risultati per ottenere l'esistenza di un punto di minimo per il funzionale che risolve il problema della ricolorazione.
Resumo:
Ci proponiamo di introdurre i risultati principali della teoria canonica delle perturbazioni. In particolare, studiamo la riduzione generale di sistemi unidimensionali e la teoria di Birkhoff nel caso multidimensionale. Come ulteriori sviluppi, descriviamo anche il teorema KAM.
Resumo:
La tesi affronta la classificazione delle superfici compatte e prive di bordo. Successivamente, si vede un'applicazione del teorema di classificazione alle curve algebriche proiettive complesse, non singolari e irriducibili.
Resumo:
Con questo lavoro si studia l'argomento della dimensione di un insieme parzialmente ordinato P, introdotta nel 1941 da Dushnik e Miller, tramite diagrammi di Hasse, in modo da avere una visione geometrica di un concetto algebrico. Il Teorema di Szpilrajn permette di linearizzare un qualsiasi insieme parzialmente ordinato P: questo anticipa la definizione di dimensione, siccome tutte le linearizzazioni sono realizzatori: le loro coppie comuni sono presenti anche in P. La dimensione viene definita come il minimo numero cardinale m di realizzatori per P. Vengono rivisti alcuni dei risultati già pubblicati da M. Barnabei, F. Bonetti e R. Pirastu e ripresi da M. Silimbani nella sua Tesi di Dottorato: ci si concentra sulla dimensione 2 in cui può essere definito un etichettamento doppio, che si può utilizzare per avere un algoritmo poco costoso atto a sapere se un insieme parzialmente ordinato ha dimensione 2 : esso pone le basi per una corrispondenza biunivoca tra un insieme parzialmente ordinato di cardinalità n dotato di un etichettamento doppio e l'insieme delle permutazioni su n elementi. Infine viene spiegato un altro modo per scoprire se un insieme parzialmente ordinato P ha dimensione al massimo 2 servendosi del solo diagramma di Hasse: ciò succede se e solo se il grafo di inconfrontabilità di P ammette un orientamento transitivo.
Resumo:
In questa tesi studiamo le proprietà fondamentali delle funzioni armoniche. Ricaviamo le formule di media mostrando alcune proprietà importanti, quali la disuguaglianza di Harnack, il teorema di Liouville, il principio del massimo debole e forte. Infine, illustriamo un criterio di risolubilità per il problema di Dirichlet per il Laplaciano in un arbitrario dominio limitato di R^n tramite un metodo noto come metodo di Perron per le funzioni subarmoniche.
Resumo:
Lo scopo di questa tesi consiste nello studio delle proprietà generali di sistemi compatti statici e a simmetria sferica nell'ambito dei modelli che prevedono l'esistenza di dimensioni spaziali aggiuntive e che sono comunemente dette del mondo-brana. Si comincerà con una breve descrizione di teorie gravitazionali a più dimensioni, in particolare si parte dalla teoria di Kaluza-Klein, per arrivare ai modelli ADD(Arkani-Hamed, Dimopoulos, Dvali) e infine a quelli RS(Rundall, Sundrum)che interessano direttamente questo studio. Per questi modelli, vengono quindi ricavate le equazioni di campo multidimensionali dall'azione di Einstein-Hilbert e successivamente le si proietta, facendo uso delle equazioni di Gauss e Codazzi, su una brana massiva immersa in un “bulk” cinquedimensionale. Infine si studiano le equazioni di campo di Einstein quadridimensionali per una generica metrica che può servire a descrive stelle statiche, a simmetria sferica e costituite da un fluido perfetto isotropo. Successivamente si ripete la stessa analisi partendo dall'equazione di campo sulla brana e si confrontano i risultati nei due diversi contesti.
Resumo:
Questo elaborato tratta dell'ipotesi ergodica, problema centrale nell'ambito della giustificazione dei risultati della meccanica statistica, e dell'importanza che svolge in essa il tempo di osservazione. Dopo aver presentato varie formulazioni del problema ergodico, si esamina la questione dei tempi di ritorno e si mostra come il teorema di ricorrenza di Poincaré non sia in contraddizione con la possibilità del raggiungimento dell'equilibrio. Infine, l'analisi dell'apparente paradosso di Fermi-Pasta-Ulam e la discussione di alcune proposte di soluzione mostrano un'applicazione della trattazione astratta condotta precedentemente.
Resumo:
L’odierno mercato concorrenziale ha portato le aziende a rinnovare il sistema produttivo, spostandosi da un approccio innovativo convergente, in cui le imprese erano le uniche detentrici del controllo dell’intero processo, fin dalla generazione di nuove idee e proposte di innovazione, ad un approccio aperto, denominato Open Innovation, che fa leva sul concetto di flusso libero e bidirezionale di idee e tecnologie tra l’azienda e l’ambiente esterno. È in questo contesto che è stata progettata in Carpigiani una piattaforma e-maintenance chiamata Teorema che, sfruttando un sistema di telemetria, consente di monitorare in tempo reale le macchine installate presso l’utente finale, acquisendo importanti informazioni sul reale utilizzo e sulle effettive funzionalità impiegate dal cliente. Grazie a tale gestione remota, allo stesso tempo è possibile garantire un’efficace operazione di diagnostica e prognostica atte a prevenire eventuali malfunzionamenti. Il presente elaborato fornisce un concreto metodo di utilizzo di tale piattaforma per il monitoraggio real time di macchine per gelato espresso, al fine di verificarne l’effettivo utilizzo da parte del cliente ed il corretto dimensionamento dell’impianto. Per mezzo della piattaforma Teorema è stato inoltre possibile eseguire un’indagine comparativa sui consumi energetici misurati in macchina, testando l’efficienza di funzionamento. Infine è stata eseguita un’analisi FMEA degli allarmi rilevati sul parco di macchine analizzate, per valutare l’affidabilità della macchina e dei suoi componenti.
Resumo:
Lo scopo della tesi è dimostrare un teorema che offre una condizione necessaria e sufficiente affinché un poliedro con facce identificate risulti una varietà tridimensionale. Nel primo capitolo si descrive una possibile metodologia di studio e presentazione delle superfici al fine di fare un confronto con le 3-varietà. Nel secondo capitolo, prima di studiare il teorema principale, si descrivono nozioni di topologia algebrica utili nella sua dimostrazione: la coomologia e la dualità di Poincaré. Infine il terzo capitolo è dedicato alla descrizione di due esempi di 3-varietà e ad un controesempio al teorema in dimensione 5.
Resumo:
Definizioni e enunciati riguardo al gruppo fondamentale, alle azioni di gruppo, ai rivestimenti, alle varietà topologiche, differenziabili e riemanniane, alle isometrie e ai gruppi discreti di isometrie. Approfondimento riguardo alle superfici connesse, compatte e orientabili con classificazione topologica, definizione di curvatura gaussiana con classificazione delle superfici in base al valore della curvatura, teorema di Killing-Hopf, teorema di uniformizzazione, enunciato del teorema che verrà dimostrato: la sfera è l'unica superficie connessa, compatta e orientabile ellittica, il toro è l'unica piatta, le somme connesse di g tori (g>1) sono iperboliche. Descrizione del piano euclideo con relativa metrica, descrizione delle sue isometrie, teorema di Chasles con dimostrazione, dimostrazione del toro come unica superficie connessa, compatta e orientabile piatta. Descrizione della sfera con relativa metrica, descrizione delle sue isometrie, dimostrazione della semplicità di SO(3), dimostrazione della sfera come unica superficie connessa, compatta e orientabile ellittica. Descrizione di due modelli del piano iperbolico, descrizione delle sue isometrie, dimostrazione del fatto che le somme connesse di g tori (g>1) sono iperboliche. Definizione di gruppo Fuchsiano e di spazio di Teichmuller.
Resumo:
La tesi si basa sulla descrizione dei p-gruppi di ordine finito, definiti p-gruppi, cioè quei gruppi che hanno come cardinalità una potenza di un numero primo. Vengono enunciati i teoremi di Sylow e le sue conseguenze. Infine si discute il teorema fondamentale sui gruppi abeliani finiti e la funzione di Eulero.
Resumo:
Questa tesi illustra il teorema di decomposizione delle misure e come questo viene applicato alle trasformazioni che conservano la misura. Dopo aver dato le definizioni di σ-algebra e di misura ed aver enunciato alcuni teoremi di teoria della misura, si introducono due differenti concetti di separabilità: quello di separabilità stretta e quello di separabilità, collegati mediante un lemma. Si descrivono poi la funzione di densità relativa e le relative proprietà e, dopo aver definito il concetto di somma diretta di spazi di misura, si dimostra il teorema di decomposizione delle misure, che permette sotto certe ipotesi di esprimere uno spazio di misura come somma diretta di spazi di misura. Infine, dopo aver spiegato cosa significa che una trasformazione conserva la misura e che è ergodica, si dimostra il teorema di Von Neumann, per il quale le trasformazioni che conservano la misura risultano decomponibili in parti ergodiche.