962 resultados para T-287C POLYMORPHISM
Resumo:
v. 45, n.2, p.152-160, abr/.jun. 2016.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Antineoplastic drugs are hazardous chemical agents used mostly in the treatment of patients with cancer, however health professionals that handle and administer these drugs can become exposed and develop DNA damage. Comet assay is a standard method for assessing DNA damage in human biomonitoring and, combined with formamidopyrimidine DNA glycosylase (FPG) enzyme, it specifically detects DNA oxidative damage. The aim of this study was to investigate genotoxic effects in workers occupationally exposed to cytostatics (n = 46), as compared to a control group with no exposure (n = 46) at two Portuguese hospitals, by means of the alkaline comet assay. The potential of the OGG1 Ser326Cys polymorphism as a susceptibility biomarker was also investigated. Exposure was evaluated by investigating the contamination of surfaces and genotoxic assessment was done by alkaline comet assay in peripheral blood lymphocytes. OGG1 Ser326Cys (rs1052133) polymorphism was studied by Real Time PCR. As for exposure assessment, there were 121 (37%) positive samples out of a total of 327 samples analysed from both hospitals. No statistically significant differences (Mann-Whitney test, p > 0.05) were found between subjects with and without exposure, regarding DNA damage and oxidative DNA damage, nevertheless the exposed group exhibited higher values. Moreover, there was no consistent trend regarding the variation of both biomarkers as assessed by comet assay with OGG1 polymorphism. Our study was not statistically significant regarding occupational exposure to antineoplastic drugs and genetic damage assessed by comet assay. However, health professionals should be monitored for risk behaviour, in order to ensure that safety measures are applied and protection devices are used correctly.
Resumo:
The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.
Resumo:
Kidney transplantation has been recognised as the optimal treatment choice for most end stage renal disease patients and the increase of allograft survival rates is achieved through the refinement of novel immunosuppressive agents. Chronic Graft Disease (CGD) is a multifactorial process that likely includes a combination of immunological, apoptotic and inflammatory factors. The application of individualised immunosuppressive therapies will also depend on the identification of risk factors that can influence chronic disease. Despite being the subject of several independent studies, investigations of the relationship between transforming growth factor-b1 (TGF-b1) polymorphisms and kidney graft outcome continue to be plagued by contradictory conclusions.
Resumo:
Rotavirus double-stranded RNA was detected directly in sewage treatment plant samples over a 1-year period by reverse transcription followed by PCR amplification of the VP7 gene and Southern blot hybridization. The presence of naturally occurring rotaviruses was demonstrated in 42% of raw sewage samples and in 67% of treated effluent samples, Amplified viral sequences were analyzed bg restriction enzymes. Ten different restriction profiles were characterized, most of which were found in treated effluent samples. A mixture of restriction profiles was observed in 75% of contaminated effluent samples, The profiles were compared with those obtained from human rotavirus isolates involved in infections in children from the same area (six different profiles were detected), Five identical viral sequences were detected in both environmental and clinical samples, Restriction profiles sere also compared io profiles from known genomic sequences of human and animal viruses. Both human and animal origins of rotavirus contamination of water seemed likely.
Resumo:
Background: The -819C/T polymorphism in interleukin 10 (IL-10) gene has been reported to be associated with inflammatory bowel disease (IBD) ,but the previous results are conflicting. Materials and Methods: The present study aimed at investigating the association between this polymorphism and risk of IBD using a meta-analysis.PubMed,Web of Science,EMBASE,google scholar and China National Knowledge Infrastructure (CNKI) databases were systematically searched to identify relevant publications from their inception to April 2016.Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects models. Results: A total of 7 case-control studies containing 1890 patients and 2929 controls were enrolled into this meta-analysis, and our results showed no association between IL-10 gene -819C/T polymorphism and IBD risk(TT vs. CC:OR=0.81,95%CI 0.64- 1.04;CT vs. CC:OR=0.92,95%CI 0.81-1.05; Dominant model: OR=0.90,95%CI 0.80-1.02; Recessive model: OR=0.84,95%CI 0.66-1.06). In a subgroup analysis by nationality, the -819C/T polymorphism was not associated with IBD in both Asians and Caucasians. In the subgroup analysis stratified by IBD type, significant association was found in Crohn’s disease(CD)(CT vs. CC:OR=0.68,95%CI 0.48-0.97). Conclusion: In summary, the present meta-analysis suggests that the IL-10 gene -819C/T polymorphism may be associated with CD risk.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in the rpoB, katG, inhA, ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 for rpoB, katG, inhA, ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Background: H19 is a strong candidate gene for influencing birth weight variation and is exclusively imprinted maternally. In an attempt to understand the relationship of this gene polymorphism with low birth weight children, we investigated association of H19/RsaI polymorphism with low birth weight and normal birth weight in children and their mothers. Objectives: The aim of our study was to establish the association between H19 gene polymorphism and LW in children born in Pernambuco, state of Brazil. Patients and Methods: It were selected 89 children, 40 low birth weight (LW) and 49 normal birth weight (NW) and 71 mothers (40 mothers of newborns NW and 31 mothers of newborns LW) attended at Dom Malan Hospital, Petrolina, Pernambuco - Brazil. Peripheral blood samples were collected from patients and genomic DNA was extracted and detected by electrophoresis agarose gel, stained by Blue Green Loading Dye. DNA PCR amplification was done using the primers H1 (sense) and H3 (antisense). PCR products were digested with RsaI and electrophoresed on agarose gel stained by ethidium bromide. Statistical analyses were performed using the program BioEstat version 5.0. Results: The RsaI polymorphism in the H19 gene showed that genotype frequencies did not differ statistically between low birth weight (AA = 12.5%, AB = 45%, BB = 42.5%) and control (AA = 8.6% AB = 36.73%, BB= 55.10% groups) and the allele frequencies were not significantly different (P = 0.2897). We also did not observe any association between maternal H19 allele polymorphism and low birth weight newborns (P =0.7799) or normal birth weight children (P = 0.8976). Conclusions: The small size of sample may be the explanation for these results; future studies with more patients are needed to confirm the effect of H19/RsaI polymorphism on birth weight of LW newborns.
Resumo:
Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.
Resumo:
Mycobacterium bovis is the etiological agent of tuberculosis in domestic and wild animals. Its involvement as a human pathogen has been highlighted again with the recent descriptions of transmission through dairy products (18), reactivation or primary infection in human immunodeficiency virus-infected patients (5), and association with meat industry workers, animal keepers, or hunters (3). Strains resistant to antituberculous drugs (M. bovis is naturally resistant to pyrazinamide) pose an additional risk (2). Several studies have demonstrated that mutations in target genes are associated with resistance to antituberculous drugs (4, 7, 10, 11, 16). However, most of them have been developed in Mycobacterium tuberculosis strains and limited data are available regarding M. bovis isolates. The aim of this study was to characterize by sequencing the main genes involved in antibiotic resistance in two multidrug-resistant (MDR) M. bovis isolates in a human outbreak detected in a hospital in Madrid that subsequently spread to several countries (5, 6, 15). The isolates were resistant to 11 drugs, but only their rpoB and katG genes have been analyzed so far (1, 14). We studied the first (93/R1) and last (95/R4) M. bovis isolates of this nosocomial outbreak, characterized by spoligotyping as SB0426 (hexacode 63-5F-5E-7F-FF-60 in the database at www.mbovis.org) (1, 13). Several genes involved in resistance to isoniazid (katG, ahpC, inhA, and the oxyR-ahpC intergenic region), rifampin (rpoB), streptomycin (rrs, rpsL), ethambutol (embB), and quinolones (gyrA) were studied. These genes, or fragments of genes, were amplified and sequenced as previously described (12). The sequence analysis revealed polymorphisms in five (ahpC, rpoB, rpsL, embB, and gyrA) out of nine analyzed genes (Table 1). Nucleotide substitutions in four genes cause a change in the encoded amino acid. Two additional synonymous mutations in ahpC and rpsL differentiated the first and last isolates from the outbreak.