837 resultados para Structural change
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.
Resumo:
Secondary social education in Australia is set to change with the new national history curriculum but integrated social education will continue in the middle years of schooling. Competing discourses of disciplinary and integrated social education approaches create new challenges for pre-service teachers as identification with a teaching area is an important aspect of developing a broader teacher identity. Feedback on a compulsory, final year curriculum studies unit revealed the majority of secondary pre-service teachers identified with at least one social science discipline. However, only a small number listed the integrated social education curriculum of Studies of Society and Environment (SOSE), even though SOSE was an essential part of their brief. More complex identities were revealed in post-teaching practice interviews. In times of curriculum change, attention to pre-service teachers’ disciplinary knowledge is critical in developing a stable subject identity.
Resumo:
Corporate advertisers spend far greater budgets than any social marketing campaign and have great potential to change public opinion on the urgent need for action on climate change. However “green-washing” has become a widespread practice by companies that wish to appear to be socially responsible without a genuine commitment and consumers can be very cynical about green marketing campaigns. Can companies be climate change advocates and still satisfy shareholders? This paper offers a case study on an Australian insurance company that argues it can make money from doing the right thing.
Resumo:
Actions Towards Sustainable Outcomes Environmental Issues/Principal Impacts The increasing urbanisation of cities brings with it several detrimental consequences, such as: • Significant energy use for heating and cooling many more buildings has led to urban heat islands and increased greenhouse gas emissions. • Increased amount of hard surfaces, which not only contributes to higher temperatures in cities, but also to increased stormwater runoff. • Degraded air quality and noise. • Health and general well-being of people is frequently compromised, by inadequate indoor air quality. • Reduced urban biodiversity. Basic Strategies In many design situations, boundaries and constraints limit the application of cutting EDGe actions. In these circumstances, designers should at least consider the following: • Living walls are an emerging technology, and many Australian examples function more as internal feature walls. However,as understanding of the benefits and construction of living walls develops this technology could be part of an exterior facade that enhances a building’s thermal performance. • Living walls should be designed to function with an irrigation system using non-potable water. Cutting EDGe Strategies • Living walls can be part of a design strategy that effectively improves the thermal performance of a building, thereby contributing to lower energy use and greenhouse gas emissions. • Including living walls in the initial stages of design would provide greater flexibility to the design, especially of the facade, structural supports, mechanical ventilation and watering systems, thus lowering costs. • Designing a building with an early understanding of living walls can greatly reduce maintenance costs. • Including plant species and planting media that would be able to remove air impurities could contribute to improved indoor air quality, workplace productivity and well-being. Synergies and References • Living walls are a key research topic at the Centre for Subtropical Design, Queensland University of Technology: http://www.subtropicaldesign.bee.qut.edu.au • BEDP Environment Design Guide: DES 53: Roof and Facade Gardens • BEDP Environment Design Guide: GEN 4: Positive Development – Designing for Net Positive Impacts (see green scaffolding and green space frame walls). • Green Roofs Australia: www.greenroofs.wordpress.com • Green Roofs for Healthy Cities USA: www.greenroofs.org
Resumo:
Building Information Modelling (BIM) is an IT enabled technology that allows storage, management, sharing, access, update and use of all the data relevant to a project through out the project life-cycle in the form of a data repository. BIM enables improved inter-disciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. While the technology itself may not be new, and similar approaches have been in use in some other sectors like Aircraft and Automobile industry for well over a decade now, the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry is still to catch up with them in its ability to exploit the benefits of the IT revolution. Though the potential benefits of the technology in terms of knowledge sharing, project management, project co-ordination and collaboration are near to obvious, the adoption rate has been rather lethargic, inspite of some well directed efforts and availability of supporting commercial tools. Since the technology itself has been well tested over the years in some other domains the plausible causes must be rooted well beyond the explanation of the ‘Bell Curve of innovation adoption’. This paper discusses the preliminary findings of an ongoing research project funded by the Cooperative Research Centre for Construction Innovation (CRC-CI) which aims to identify these gaps and come up with specifications and guidelines to enable greater adoption of the BIM approach in practice. A detailed literature review is conducted that looks at some of the similar research reported in the recent years. A desktop audit of some of the existing commercial tools that support BIM application has been conducted to identify the technological issues and concerns, and a workshop was organized with industry partners and various players in the AEC industry for needs analysis, expectations and feedback on the possible deterrents and inhibitions surrounding the BIM adoption.
Resumo:
Indigenous self-determination is the recognised right of all peoples to freely determine their political status, and pursue their economic, social and cultural development. Unfinished Constitutional Business? offers fresh insights into the ways communities can chart their own course and realise self-determination. Because the history of colonisation is emotionally charged, the issue has been clouded by a rhetoric that has sometimes obstructed analysis.
Resumo:
Monitoring unused or dark IP addresses offers opportunities to extract useful information about both on-going and new attack patterns. In recent years, different techniques have been used to analyze such traffic including sequential analysis where a change in traffic behavior, for example change in mean, is used as an indication of malicious activity. Change points themselves say little about detected change; further data processing is necessary for the extraction of useful information and to identify the exact cause of the detected change which is limited due to the size and nature of observed traffic. In this paper, we address the problem of analyzing a large volume of such traffic by correlating change points identified in different traffic parameters. The significance of the proposed technique is two-fold. Firstly, automatic extraction of information related to change points by correlating change points detected across multiple traffic parameters. Secondly, validation of the detected change point by the simultaneous presence of another change point in a different parameter. Using a real network trace collected from unused IP addresses, we demonstrate that the proposed technique enables us to not only validate the change point but also extract useful information about the causes of change points.
Resumo:
Undoubtedly, the past half-century has witnessed an escalation of changes in the social, political, economic and educational structures in many societies around the world. Some have seen change as a challenge and hope while, for many others, it is a source of concern and worry. Some have adopted change with gusto, while for many it is something to be resisted. Some say we live in a world and times with an increasing awareness that “times are changing”, while for some “the more things change, the more they stay the same”.
Resumo:
Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure.----- Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer.----- Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate.----- Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping.----- Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.
Resumo:
Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.
Resumo:
The proliferation of innovative schemes to address climate change at international, national and local levels signals a fundamental shift in the priority and role of the natural environment to society, organizations and individuals. This shift in shared priorities invites academics and practitioners to consider the role of institutions in shaping and constraining responses to climate change at multiple levels of organisations and society. Institutional theory provides an approach to conceptualising and addressing climate change challenges by focusing on the central logics that guide society, organizations and individuals and their material and symbolic relationship to the environment. For example, framing a response to climate change in the form of an emission trading scheme evidences a practice informed by a capitalist market logic (Friedland and Alford 1991). However, not all responses need necessarily align with a market logic. Indeed, Thornton (2004) identifies six broad societal sectors each with its own logic (markets, corporations, professions, states, families, religions). Hence, understanding the logics that underpin successful –and unsuccessful– climate change initiatives contributes to revealing how institutions shape and constrain practices, and provides valuable insights for policy makers and organizations. This paper develops models and propositions to consider the construction of, and challenges to, climate change initiatives based on institutional logics (Thornton and Ocasio 2008). We propose that the challenge of understanding and explaining how climate change initiatives are successfully adopted be examined in terms of their institutional logics, and how these logics evolve over time. To achieve this, a multi-level framework of analysis that encompasses society, organizations and individuals is necessary (Friedland and Alford 1991). However, to date most extant studies of institutional logics have tended to emphasize one level over the others (Thornton and Ocasio 2008: 104). In addition, existing studies related to climate change initiatives have largely been descriptive (e.g. Braun 2008) or prescriptive (e.g. Boiral 2006) in terms of the suitability of particular practices. This paper contributes to the literature on logics by examining multiple levels: the proliferation of the climate change agenda provides a site in which to study how institutional logics are played out across multiple, yet embedded levels within society through institutional forums in which change takes place. Secondly, the paper specifically examines how institutional logics provide society with organising principles –material practices and symbolic constructions– which enable and constrain their actions and help define their motives and identity. Based on this model, we develop a series of propositions of the conditions required for the successful introduction of climate change initiatives. The paper proceeds as follows. We present a review of literature related to institutional logics and develop a generic model of the process of the operation of institutional logics. We then consider how this is applied to key initiatives related to climate change. Finally, we develop a series of propositions which might guide insights into the successful implementation of climate change practices.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
Excessive consumption of alcohol is a serious public health problem. While intensive treatments are suitable for those who are physically dependent on alcohol, they are not cost-effective options for the vast majority of problem drinkers who are not dependent. There is good evidence that brief interventions are effective in reducing overall alcohol consumption, alcohol-related problems, and health-care utilisation among nondependent problem drinkers. Psychologists are in an ideal position to opportunistically detect people who drink excessively and to offer them brief advice to reduce their drinking. In this paper we outline the process involved in providing brief opportunistic screening and intervention for problem drinkers. We also discuss methods that psychologists can employ if a client is not ready to reduce drinking, or is ambivalent about change. Depending on the client's level of motivation to change, psychologists can engage in either an education-clarification approach, a commitment-enhancement approach, or a skills-training approach. Routine engagement in opportunistic intervention is an important public-health approach to reducing alcohol-related harm in the community.
Resumo:
-