995 resultados para Storage condition
Resumo:
Loss of solids from and gain in weight of meat of whole prawn and prawn meat stored in ice has been studied to explain the mechanism of solid loss. Two stages are identified in this phenomenon. In the first stage water is absorbed without loss of solids resulting in a maximum increase in weight. In the second stage both solids and water are lost resulting in gradual decrease in weight from the maximum reached but not reaching the original weight. It is inferred that whole prawns stored in ice up to two days give the maximum peeled yield without loss of nutrients and at the same time making the peeling process easier.
Resumo:
The effect of bulk packaging on the storage of salted and dried fish was studied at ambient conditions. Four different packaging systems were tried, among which gusseted type high density polyethylene woven sacks having either circular loom or traditional loom laminated with 100 gauge low density polyethylene were found to be best suited for dry fish packaging as they could withstand the hazards of handling, transportation and storage.
Resumo:
Results of the study indicate that the survival rate and increase in body weight did not differ significantly at different salinity levels or at different stocking density manipulation methods. A significant interaction between salinity and stocking density manipulation could not be demonstrated statistically. There apparently is no need to reduce the salinity of the water used in storing milkfish Chanos chanos fry in order to attain higher survival as commonly believed. Sufficient food and maintenance of good water quality are more important than salinity for higher survival of fry during storage.
Resumo:
A simple statistical index, for evaluating the condition of growth in an aquaculture experiment and indicating the extent of effect of any plausible rival hypothesis, is presented.
Resumo:
Changes in the total as well as major individual carbonyls of oil sardine muscle during storage at room temperature for 24 h and in crushed ice up to 6 days are reported. Carbonyls extracted with hexane were converted to their 2:4 dinitrophenyl hydrazone (DNPH) derivatives and were separated into major classes by column chromatography on celite/magnesia. Individual carbonyls were then identified by capillary gas chromatography of these derivatives. Though absolute values for carbonyls exhibited wide variations depending upon the degree of freshness, the pattern of changes in the carbonyls during storage of fish under different conditions gave an insight into the influence of carbonyls on flavour. The significance of the findings is discussed.
Resumo:
Kalawa (Epinephelus spp.) caught on board FORV Sagar Sampada was frozen in the absolutely fresh condition as well as after keeping for 5 and 10h at ambient temperature. Evaluation of changes in the quality of these samples during storage at -20°C indicated appreciable difference between the fresh frozen and delayed frozen fish during the initial stages of storage. Fresh frozen and 5h delayed froze fish samples had a shelf-life of more than 62 weeks, whereas the 10h delayed frozen fish had a shelf-life of about 48 weeks.
Resumo:
Surimi was prepared from silver carp with an aim to put this underutilized fish for profitable use. The mince prepared was washed twice with chilled water (5°C) using mince to water ratio (w/v) of 1:2 for 5-6 minutes each. After final dewatering to moisture content to about 80%; half the quantity of washed minced meat was mixed with cryoprotectants (4% sorbitol, 4% sucrose and 0.3% sodium tripolyphosphate) to produce surimi. The prepared surimi and the dewatered minced meat were packed in LDPE bags, frozen using a plate freezer and stored at -20°C. Surimi and dewatered minced meat from frozen storage were used as base material for production of fish cakes. These were fried at 160°C for 3 to 4 minutes before serving for organoleptic test. Changes in salt soluble nitrogen, total volatile base nitrogen, non-protein nitrogen, peroxide value and free fatty acid of surimi and dewatered mince were estimated at every ten days interval during the storage period of 3 months. The study has indicated that frozen storage of surimi could be a potential method for effective utilization of silver carp. This surimi when incorporated in fish cakes yielded products which retained the shelf life even up to 90 days of storage.
Resumo:
The shelf life of fresh water prawn Macrobrachium rosenbergii by applying low temperature was investigated. M. rosenbergii preserved at -20°C was subjected for quality assessment before storage and at 15, 30, 45, and 90 days of storage period. The quality assessments as done microbiological viz. total bacterial count (TBC), total mould count (TMC), total yeast count (TYC), total coliform count (TCC) and salmonella count. All the samples were acceptable during 90 days because the upper limit of all spoilage indicator was not exceeding within the experimental time period.
Resumo:
Fish pickles (with olive and tamarind) were prepared from mola fish (Amblypharyngodon mola) and their nutritional and food quality were assessed. The quality of the pickle prepared with olive was excellent and the pickle prepared with tamarind was found good. Moisture content of the two pickle products were 43.85% (with tamarind) and 50.89% (with olive). The protein and lipid contents of tamarind added pickle were 19.13 and 35.64% respectively; pickle with olive contained less protein (13.16%) compared to tamarind added mola pickle. Lipid contents were almost same in both cases. Ash content of two pickles was also found similar (1.00%). The quality of mola pickles stored either in cool condition (4°C) with vinegar or at room temperature with Na-benzoate were found good for consumption up to 90 days of storage. All of the fish pickles preserved under different condition were found in acceptable condition up to 240 days storage and pickle with vinegar stored at 4°C was found good for consumption at the end of 240 days.
Resumo:
The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.
Resumo:
In this study, quality of fresh, slow frozen and quick frozen tilapia fillets and its changes during storage at -18C° were investigated. For preparation the samples, fresh tilapia fillets were frozen by slow and quick frozen methods. Slow frozen samples were prepared by storing the packed fillets directly in the -18 C°. The sprila freezing tunle with -30C° was also used for preparation the quick frozen sample. The quick frozen samples were then stored at -18C°for six months. Proximate composition, fatty acid profiles, TBA, PV, TVN, Total cuont, Drip loss, and sensory evaluation of the samples were determined in every month. Scanning Electron Microscopy (SEM) was used for study on the effects of the frozen condition on the microstructure of the fillets. Results indicated that two different frozen methods had significantly different effects on the quality of the fillets. Most of the proximate composition (protein, moistre and fat) reduced during the storage. Quick frozen filets had significantly (P<0.05) lower reduction than slow frozen samples. All of the chemical quality indexes (PV, TBA, and TVN) increased during the storage as compered to the fresh samples. In these paramethers, the slow freezing had higher changes than quick freezing metods (P<0.05). The microbial properties of the samples showed decrese during the storage. Lower amont of total cuont was observed at the end of the storage time in the quick frozen samples than slow frozen once (P<0.05). The large changes in the fatty acid profiles of the sample were fond in all samples. During the storage SFA and MUF of the samples increased however, the PUFA decresed. A lower change was obseved in the quick frozen samples than slow frozen samples (P<0.05). Drip loss was increased in both frozen samples during the storage period. The percentage of the drip in the slow frozen samples was significantly higer than quick frozen samples (P<0.05). SEM micrographs were also showed that the chnges in the microstructur of the samples was different in the slow and frozen samples. Slow freezing methods had higher damge in the microstructure of the sample then quick freezing mathods. Sensory evaluation of the samples indicated that a better acceptability in the quick frozen samples than slow frozen sample (P<0.05).
Resumo:
The present study aims to find the effect of freezing Time on the quality of Cobia (Rastrelliger kanagurta) and Indian Squid in commercial scale during freezing and subsequent frozen storage (−18◦C). Total time for freezing was significantly different (P<0.05) between the Cobia and Indian squid samples. The difference in the freezing time could be attributed to the varied quality of the 2 samples. Upon freezing, the moisture content decreased in Indian Squide samples compared to Cobia freezer where protein content decreased in both the samples. Upon freezing and during frozen storage, lipid oxidation products (peroxide value, and free fatty acid value) and volatile bases (total volatile base nitrogen) showed an increasing trend in both the samples with values slightly higher in Indian squid samples compared to cobia frozen samples. The total plate counts showed a significantly (P<0.05) decreasing trend in both the samples. K value did not show any significant (P<0.05) difference between the samples whereas the histamine formation was significantly (P<0.05) increased in Indian squid frozen samples compared to cobia samples. The taste and overall acceptability was significantly different (P<0.05) in cobia samples compared to Indian squid frozen samples on 5th month. Both samples were in acceptable condition up to 5 month but the Cobia frozen samples quality was slightly better than the air blast frozen samples.
Resumo:
This project was done during a one-year period (2006-2007) with the aim of assessing and evaluating the susceptible and vulnerable habitat of Tajan River estuarine region as well as identifying its ecological features. This region consists of Tajan estuarine region as one of the sub-basins of the Caspian Sea basin which covers a surface of 2km2. In this assessment, 6 riverine estuarine and marine stations were chosen in which non-biotic parameters such as temperature, salinity, dissolved oxygen, pH and nutrients, and biotic parameters such as variation, density, plankton, primary production by chlorophyll-a. Benthos variation density, silt and the organic materials of the sediments were sampled and measured monthly. The amount of chlorophyll-a concentration and primary production showed a lot of seasonal changes at these stations which ranged from0.3 to 96 mg/m3. The results from the primary productions indicated that the eastern station of the estuary had high concentrations of chlorophyll-a during all seasons (96mg/m3). The most important and dominant planktonic groups in this region included Bacillariophyta from plankton and copepoda from zooplankton. The most important Benthos communities consisted of Driessena polymorpha.Cerastoderma lamarki in estuarine region,Chironomus plumosus in riverine region and Hypaniola sp. In marine region. Assessing the annual variation in these three riverine, estuarine and marine regions, phytoplankton with 3.1, Zooplankton with 2.7 and Benthos with 1.9 Showed the most density in the estuarine region. Assessing the annual density, phytoplanktonic (6118967 no . in m3) and zooplanktonic (7272 no . in m3) communities showed the most density in the marine region. Assessing the statistical tests showed that the estuarine and riverine regions had a significant difference in planktonic density (p<0.005) compared with the marine region. Moreover, The zeoplanktonic density in the marine region had a significant difference (p<0.005) with estuarine and riverine regions. Tooki test and one-way variance Analysis showed that in assessing the planktonic groups (p<0.005) and Benthos (p<0.005), there was a significant difference in variation index between river with estuary, and estuary with the sea. The amount of the total annual live biomass of the Benthos resource in Tajan river estuarine region was estimated 757.66 g/m2.
Resumo:
Effects of post-ovulatory and post-stripping retention time and temperature on egg viability rates were studied in kutum (Rutilus frisii kutum). Eggs were retained inside (in vivo storage) or outside the ovarian cavity with ovarian fluid (in vitro storage) at various temperatures. Two experiments were performed: 1) Partial volumes of eggs were stripped and fertilized at 24- hour intervals for 96 hours post-ovulation (HPO) (at 11 °C) and at 12-hour intervals for 72 HPO (at 14 °C), and 2) stored eggs were fertilized after 0, 2, 4, 6, and 8 hours post-stripping (HPS) at temperatures of 4, 10, 12, and 26 °C. In the first experiment, the highest eyeing and hatching rates (76% and 60% at 11 °C; 81% and 71% at 14 °C) and the lowest eyed-egg mortalities (20% at 11 °C; 12% at 14 °C) occurred in the eggs fertilized immediately (0–24 HPO at 11 °C and 0–12 HPO at 14 °C) after ovulation. Egg viability, as shown by successful eyeing and hatching rates, was completely lost by 72–96 HPO at 11 °C, and 60–72 HPO at 14 °C. In the second experiment, the maximum eyeing (87%) and hatching (75%) rates of eggs took place at 0 HPS followed by 8 HPS (> 80% and > 70%, respectively) at 4 °C. As storage temperature increased, egg viability decreased: 80%, 70%, and 50% viable at 8 HPS at 4, 10, and 12 °C, respectively. The eggs stored at 26 °C lost their viability almost completely after 4 HPS. Eyed-egg mortality increased from 13% at 0 HPS to 48.2% at 4 HPS at 26°C. These results demonstrate that egg stripping should take place within 168 °C-hours after ovulation and that complete loss of viability of the eggs occurs by 672°C-hours after ovulation. The in vivo storage method is more effective compared to in vitro storage. Also successful in vitro storage of eggs can be used atleast within 8 hours at temperatures ranging from 4 to 12ºC.