854 resultados para Spatial patterns
Resumo:
Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of inter cohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects”design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoca analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a hetero specific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.
Resumo:
Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.
We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.
Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.
Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.
Resumo:
The modulation of neural activity in visual cortex is thought to be a key mechanism of visual attention. The investigation of attentional modulation in high-level visual areas, however, is hampered by the lack of clear tuning or contrast response functions. In the present functional magnetic resonance imaging study we therefore systematically assessed how small voxel-wise biases in object preference across hundreds of voxels in the lateral occipital complex were affected when attention was directed to objects. We found that the strength of attentional modulation depended on a voxel's object preference in the absence of attention, a pattern indicative of an amplificatory mechanism. Our results show that such attentional modulation effectively increased the mutual information between voxel responses and object identity. Further, these local modulatory effects led to improved information-based object readout at the level of multi-voxel activation patterns and to an increased reproducibility of these patterns across repeated presentations. We conclude that attentional modulation enhances object coding in local and distributed object representations of the lateral occipital complex.
Resumo:
In his introduction, Pinna (2010) quoted one of Wertheimer’s observations: “I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of color. Do I have ‘327’? No. I have sky, house, and trees.” This seems quite remarkable, for Max Wertheimer, together with Kurt Koffka and Wolfgang Koehler, was a pioneer of Gestalt Theory: perceptual organisation was tackled considering grouping rules of line and edge elements in relation to figure-ground segregation, i.e., a meaningful object (the figure) as perceived against a complex background (the ground). At the lowest level – line and edge elements – Wertheimer (1923) himself formulated grouping principles on the basis of proximity, good continuation, convexity, symmetry and, often forgotten, past experience of the observer. Rubin (1921) formulated rules for figure-ground segregation using surroundedness, size and orientation, but also convexity and symmetry. Almost a century of research into Gestalt later, Pinna and Reeves (2006) introduced the notion of figurality, meant to represent the integrated set of properties of visual objects, from the principles of grouping and figure-ground to the colour and volume of objects with shading. Pinna, in 2010, went one important step further and studied perceptual meaning, i.e., the interpretation of complex figures on the basis of past experience of the observer. Re-establishing a link to Wertheimer’s rule about past experience, he formulated five propositions, three definitions and seven properties on the basis of observations made on graphically manipulated patterns. For example, he introduced the illusion of meaning by comics-like elements suggesting wind, therefore inducing a learned interpretation. His last figure shows a regular array of squares but with irregular positions on the right side. This pile of (ir)regular squares can be interpreted as the result of an earthquake which destroyed part of an apartment block. This is much more intuitive, direct and economic than describing the complexity of the array of squares.
Resumo:
Tese de doutoramento, Ciências do Mar, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de Doutoramento, Física, 17 de Dezembro de 2013, Universidade dos Açores.
Resumo:
The main objective of this survey was to perform descriptive analysis of crime evolution in Portugal between 1995 and 2013. The main focus of this survey was to analyse spatial crime evolution patterns in Portuguese NUTS III regions. Most important crime types have been included into analysis. The main idea was to uncover relation between local patterns and global crime evolution; to define regions which have contributed to global crime evolution of some specific crime types and to define how they have contributed. There were many statistical reports and scientific papers which have analysed some particular crime types, but one global spatial-temporal analysis has not been found. Principal Component Analysis and multidimensional descriptive data analysis technique STATIS have been the base of the analysis. The results of this survey has shown that strong spatial and temporal crime patterns exist. It was possible to describe global crime evolution patterns and to define crime evolution patterns in NUTS III regions. It was possible to define three to four groups of crimes where each group shows similar spatial crime dynamics.
Resumo:
Abstract : Auditory spatial functions are of crucial importance in everyday life. Determining the origin of sound sources in space plays a key role in a variety of tasks including orientation of attention, disentangling of complex acoustic patterns reaching our ears in noisy environments. Following brain damage, auditory spatial processing can be disrupted, resulting in severe handicaps. Complaints of patients with sound localization deficits include the inability to locate their crying child or being over-loaded by sounds in crowded public places. Yet, the brain bears a large capacity for reorganization following damage and/or learning. This phenomenon is referred as plasticity and is believed to underlie post-lesional functional recovery as well as learning-induced improvement. The aim of this thesis was to investigate the organization and plasticity of different aspects of auditory spatial functions. Overall, we report the outcomes of three studies: In the study entitled "Learning-induced plasticity in auditory spatial representations" (Spierer et al., 2007b), we focused on the neurophysiological and behavioral changes induced by auditory spatial training in healthy subjects. We found that relatively brief auditory spatial discrimination training improves performance and modifies the cortical representation of the trained sound locations, suggesting that cortical auditory representations of space are dynamic and subject to rapid reorganization. In the same study, we tested the generalization and persistence of training effects over time, as these are two determining factors in the development of neurorehabilitative intervention. In "The path to success in auditory spatial discrimination" (Spierer et al., 2007c), we investigated the neurophysiological correlates of successful spatial discrimination and contribute to the modeling of the anatomo-functional organization of auditory spatial processing in healthy subjects. We showed that discrimination accuracy depends on superior temporal plane (STP) activity in response to the first sound of a pair of stimuli. Our data support a model wherein refinement of spatial representations occurs within the STP and that interactions with parietal structures allow for transformations into coordinate frames that are required for higher-order computations including absolute localization of sound sources. In "Extinction of auditory stimuli in hemineglect: space versus ear" (Spierer et al., 2007a), we investigated auditory attentional deficits in brain-damaged patients. This work provides insight into the auditory neglect syndrome and its relation with neglect symptoms within the visual modality. Apart from contributing to a basic understanding of the cortical mechanisms underlying auditory spatial functions, the outcomes of the studies also contribute to develop neurorehabilitation strategies, which are currently being tested in clinical populations.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
Fréquemment, des usagers se retrouvent confrontés à des espaces-transitoires tels que les couloirs de gares. Ces derniers présentent souvent des contraintes temporelles et spatiales qu’il serait possible de transformer en outil optimalisant l’usage. Nous avons voulu vérifier cette hypothèse en observant le degré d’adéquation entre l’offre (les aménagements) et la demande (les usages réels) dans le cas précis de la gare du midi à Bruxelles, Belgique. Nous avons récolté des indices spatiaux, temporels et comportementaux qui nous ont permis d’identifier les conditions de l’usage et, au moyen d’observations directes, de comprendre les usages réellement pratiqués. Afin de documenter le rapport entre usager et espace-temps, nous avons établit une typologie des usages qui met en évidence des figures d’interactions possibles entre ces deux composantes. Nos résultats nous ont permis d’élaborer une conclusion sous la forme d’un modèle nommé « triangle des interrelations » dans le but d’offrir un outil permettant aux professionnels d’anticiper au mieux l’impact des aménagements.
Resumo:
Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data. The examples are for map patterns of felsic metavolcanics in two different areas. Q-Q plots of the model for cell values representing proportion of 10 km x 10 km cell area underlain by this rock type are approximately linear, and the line of best fit can be used to estimate the parameters of the model. It is also shown that felsic metavolcanics in the Abitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
Aquesta tesi tracta la jerarquia i l'heterogeneïtat dels sistemes fluvials que afecten l'estructura de les comunitats bentòniques de diatomees. A nivell regional, es van buscar diferents grups de punts i les seves espècies indicadores, es va estudiar la resposta de les comunitats de diatomees als gradients ambientals, es va avaluar la utilitat de diferents índexs de diatomees i es va buscar el millor sistema de classificació per a condicions de referència. A nivell de conca, es volien definir els factors que determinen la distribució longitudinal de la diversitat de les comunitats de diatomees. Finalment, a nivell d'hàbitat es van determinar quins factors afecten les algues i els cianobacteris a aquesta escala i es va examinar la contribució relativa de l'ambient i l'espai en la distribució de la biomassa i composició d'algues i cianobacteris. Per tant, els diferents capítols d'aquesta tesi han estat desenvolupats seguint aquest esquema.