999 resultados para Spatial coceptyalization
Resumo:
We report a successful experimental observation of two-dimensional photovoltaic dark solitons in an anisotropic crystal with partially spatially incoherent light beams. This kind of solitons results from the bulk photovoltaic effect, which depends on the direction of propagation of the optical beam and on the orientation of the intensity gradient, with respect to the principal axes of the crystal.
Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions
Resumo:
The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a "ring-like" structure with some "burst-like" angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The "burst-like" modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations. (c) 2006 American Institute of Physics.
Resumo:
Propagation properties of bright and dark incoherent beams are numerically studied in photovoltaic-photorefractive crystal by using coherent density approach for the first time. Numerical simulations not only exhibit that bright incoherent photovoltaic quasi-soliton, grey-like incoherent photovoltaic soliton, incoherent soliton doublet and triplet can be established under proper conditions, but also display that the spatial coherence properties of these incoherent beams can be significantly affected during propagation by the photovoltaic field.
Resumo:
This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. Under odd and even initial conditions, a soliton triplet and a doublet are obtained respectively for given parameters. Simultaneously, coherence properties associated with the soliton triplet and doublet are discussed. In addition, if the values of the parameters are properly chosen, five and four splittings from the input dark incoherent spatial solitons can also form. Lastly, the grayness of the soliton triplet and that of the doublet are studied, in detail.
Resumo:
The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal-insulator-metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.