962 resultados para Silver addition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lower alkene production by the gas-phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of hexane (C6) with added syngas was investigated. The addition of syngas to the COC process could effectively enhance the selectivity to lower alkenes and decrease the selectivity to COx, because of the preferential reaction between O-2 with H-2 contained in the syngas, whereas it has little effect on the conversion of C6 and product distribution in the GOC process. The high selectivity to lower alkenes of 70% and low selectivity to CO, of 6% at C6 conversion of 66% were achieved over 0.1% Pt/MgAl2O4 catalyst. The COC process of C6 combined with the syngas in the feed could directly produce a gas mixture of lower alkenes, H-2, and CO, which usually is a suitable feedstock for the hydroformylation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated growth of silver clusters on three different, i.e. normally cleaved, thermally oxidized and Ar+ ion sputtered highly oriented pyrolytic graphite (HOPG), surfaces. Scanning tunneling microscopy (STM) observations reveal that uniformly sized and spaced Ag clusters only form on the sputtered surface. Ar+ sputtering introduces relatively uniform surface defects compared to other methods. These defects are found to serve as preferential sites for Ag cluster nucleation, which leads to the formation of uniform clusters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H-2) are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 similar to 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H-2 treatment at low temperatures (100 similar to 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H-2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (> 300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 similar to 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (> 300 degrees C) is still higher than that directly pretreated with H,. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver is well known to show peculiar catalytic activities in several oxidation reactions. In the present paper, we investigate the catalytic activity of silver catalysts toward CO-gelective oxidation in H-2. XRD, TEM, TPD, and in situ FTIR techniques were used to characterize the catalysts. The pretreatment of the catalysts was found to have great influence on their performance. The pretreatment in 02 improves the activity of the silver catalyst, whereas He pretreatment at 700 degreesC or direct hydrogen pretreatment shows an inverse effect. Silver catalysts undergo massive structural change during oxygen pretreatment at high temperatures (> 500 degreesC), and there is solid evidence for the formation of subsurface oxygen species. The existence of this silver-subsurface oxygen structure facilitates the formation of active sites on silver catalysts for CO oxidation, which are related to the size, morphology, and exposed crystal planes of the silver particles. Its formation requires a certain temperature, and a higher pretreatment temperature with oxygen is required for the silver catalyst with a smaller particle size. It is observed, for the first time, that adsorbed CO on the surface of silver particles can directly react with subsurface oxygen species at low temperatures (e.g., RT), and the surface oxygen can migrate into and refill these subsurface sites after the consumption of subsurface oxygen by the reaction with CO. This finding provides a new reaction pathway for CO oxidation on silver catalyst. (C) 2004 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing is the technology prescription that will help the UK’s National Health Service (NHS) beat the budget constraints imposed as a consequence of the credit crunch. The internet based shared data and services resource will revolutionise the management of medical records and patient information while saving the NHS millions of pounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

James Macduff, Neil Raistrick and Mervyn Humphreys (2002). Differences in growth and nitrogen productivity between a stay-green genotype and a wild-type of Lolium perenne under limiting relative addition rates of nitrate supply. Physiologia Plantarum, 116 (1), 52-61. Sponsorship: BBSRC RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel deposition process named CoBlastTM, based on grit blasting technology, has been used to deposit hydroxyapatite (HA) onto titanium (Ti) metal using a dopant/abrasive regime. The various powders (HA powder, apatitic abrasives) and the treated substrates were characterised for chemical composition, coating coverage, crystallinity and topography including surface roughness. The surface roughness of the HA surfaces could be altered using apatitic abrasives of different particle sizes. Compared to the standard plasma spraying process, the CoBlast surface produced excellent coating adhesion, lower dissolution, higher levels of mechanical and chemical stability in stimulated body fluid (SBF). Enhanced viability of osteoblastic cells was also observed on the CoBlast HA surfaces compared to the microblast and untreated Ti as well as the plasma HA coating. CoBlast offers an alternative to the traditional methods of coating HA implants with added versatility. Apatites substituted with antimicrobial metals can also be deposited to add functionality to HA coatings without cytotoxicty. The potential use of these coatings as an infection preventing strategy for application on hard tissue implants was assessed in vitro and also in vivo. Surface physicochemical properties and morphology were determined in addition to surface cytocompatibility assessments using a MG-63 osteoblast cell line. The antibacterial potential of the immobilised metal ion on the surface and the eluted ion to a lesser extent, contributed to the anticolonising behaviour of the surfaces against a standard bacteria strain (S. aureus) as well as a number of clinically relevant strains (MRSA, MSSA and S. epidermis). The results revealed that the surfaces coated with silver substituted apatites (AgA) outperformed the other apatites examined (apatites loaded with Zn, Sr and both Ag and Sr ions). Assessment of bacterial adherence on coated K-wires following subcutaneous implantation in a nude mouse infection model (S. aureus) for two days demonstrated that the 12% wt surface outperformed the 5% wt AgA coating. Lower inflammatory responses were activated with the insertion of the Ag loaded K-wires with a localised infection at the implantation site noted over the two day study period. These results indicated that the AgA coating on the surface of orthopaedic implants demonstrate good biocompatibility whilst inhibiting bacterial adhesion and colonising of the implant surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of uncoated silver nanoparticles (AgNPs) in a porous medium composed of silica glass beads modified with a partial coverage of iron oxide (hematite) was studied and compared to that in a porous medium composed of unmodified glass beads (GB). At a pH lower than the point of zero charge (PZC) of hematite, the affinity of AgNPs for a hematite-coated glass bead (FeO-GB) surface was significantly higher than that for an uncoated surface. There was a linear correlation between the average nanoparticle affinity for media composed of mixtures of FeO-GB and GB collectors and the relative composition of those media as quantified by the attachment efficiency over a range of mixing mass ratios of the two types of collectors, so that the average AgNPs affinity for these media is readily predicted from the mass (or surface) weighted average of affinities for each of the surface types. X-ray photoelectron spectroscopy (XPS) was used to quantify the composition of the collector surface as a basis for predicting the affinity between the nanoparticles for a heterogeneous collector surface. A correlation was also observed between the local abundances of AgNPs and FeO on the collector surface.