903 resultados para Signal interference
Resumo:
Patellofemoral pain syndrome (PFPS) is the most frequent complaint in orthopedic clinics; although, its etiology remains unclear [Bolgla, 2010; Felicio, 2011]. Trying to understand its causes has been used time analysis of electromyography (EMG), but this method shows controversies. The aim of this study was to apply a method of processing the EMG signal in the frequency domain of the vastus lateralis (VL) and vastus medialis (VM) muscles for the characterization of PFPS.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Chicory (Cichorium intybus L.) is an important broadleaves vegetable, consumed in salads and recognized by nutritional, pharmacological properties and its low calorie value. With the objective of assessing weeds interference periods over chicory crop in indirect sowing, two experiments were carried out at Garça County, São Paulo State, by using “Folhas Amarelas - Radiche” and “Folha Larga” cultivars and spacing of 0.25×0.25 m. Treatments consisted of checks with and without weeds and infestation control periods, so that crop was maintained in presence or absence of coexistence with weeds until 7, 14, 21, 28 and 35 days after seedlings transplant (DAST). Results demonstrated that “Folhas amarelas - Radiche” and “Folha Larga” chicory cultivars transplanted on winter, allowed occurrence of initial period of cohabitation with weeds (6 and 5 IPCW) greater than final period (14 and 9 FPCW), conferring, respectively, the establishment of critical periods for weed control (CPWC) in intervals of 6th to 14th and 5th to 9th days after crop transplant. Medium reduction of yield in function of weeds interference during the whole crop cycle was about 52.0% and 54.4%, respectively, for “Folhas amarelas - Radiche” and “Folha Larga” cultivars. It is important to mention that these results indicated the real need for conducting early weed control in chicory crop cultivation, even when carried out in indirect sowing system, as well as it characterizes the importance of a greater number of regional information to successfully consolidate management alternatives, less costly and more efficient in order to guarantee superior yields.
Resumo:
This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.
Resumo:
Two recently developed instruments, the Laser Optical Plankton Counter (LOPC) and the Zooscan, have been applied to study zooplankton biomass size spectra in tropical and subtropical marine ecosystems off Brazil. Both technologies rely on optical measurements of particles and may potentially be used in zooplankton monitoring programs. Vertical profiles of the LOPC installed in a 200 mu m ring net have been obtained from diverse environmental settings ranging from turbid and nearshore waters to oligotrophic open ocean conditions. Net samples were analyzed on the Zooscan and counted under a microscope. Particle biovolume in the study area estimated with the LOPC correlated with plankton displacement volume from the net samples, but there was no significant relationship between total areal zooplankton biomass determined with LOPC and the Zooscan. Apparently, normalized biomass size spectra (NBSS) of LOPC and Zooscan overlapped for particles in the size range of 500 to 1500 mu m in equivalent spherical diameter (ESD), especially at open ocean stations. However, the distribution of particles into five size classes was statistically different between both instruments at 24 of 28 stations. The disparities arise from unequal flow estimates, from different sampling efficiencies of LOPC tunnel and net for large and small particles, and possibly from the interference of non-zooplankton material in the LOPC signal. Ecosystem properties and technical differences therefore limit the direct comparability of the NBSS slopes obtained with both instruments during this study, and their results should be regarded as complementary.
Resumo:
The study proposes a constrained least square (CLS) pre-distortion scheme for multiple-input single-output (MISO) multiple access ultra-wideband (UWB) systems. In such a scheme, a simple objective function is defined, which can be efficiently solved by a gradient-based algorithm. For the performance evaluation, scenarios CM1 and CM3 of the IEEE 802.15.3a channel model are considered. Results show that the CLS algorithm has a fast convergence and a good trade-off between intersymbol interference (ISI) and multiple access interference (MAI) reduction and signal-to-noise ratio (SNR) preservation, performing better than time-reversal (TR) pre-distortion.
Resumo:
Objective The objective of this study was to assess the acute effect of intranasally administered oxytocin (OT) on subjective states, cardiovascular, and endocrine parameters in healthy volunteers who inhaled 7.5% CO2. Methods Forty-five subjects were allocated into three matched groups of subjects who received 24?international units (IU) of OT, 2?mg of lorazepam (LZP), or placebo (PL). The challenge consisted of medical air inhalation for 20?min, 10?min of rest, and CO2 7.5% inhalation for 20?min. Subjective effects were evaluated by self-assessment scales; heart rate, blood pressure, skin conductance, and salivary cortisol were also measured. Assessments were performed at four time points: (i) baseline (-15?min); (ii) post-air inhalation (90?min); (iii) post-CO2 inhalation (120?min), and (iv) post-test (160?min). Results CO2 inhalation significantly increased the anxiety score in the PL group compared with the post-air measurement but not in the OT or LZP groups. The LZP reduced anxiety after medical air inhalation. Other parameters evaluated were not affected by OT. Conclusion OT, as well as LZP, prevented CO2-induced anxiety, suggesting that this hormone has anxiolytic properties. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.
Resumo:
We investigated the possibility of reproductive interference between two sibling spider species, Paratrechalea azul and Paratrechalea ornata, which occur syntopically and reproduce synchronously. Males of both species offer a nuptial gift composed of prey wrapped in silk to females. Through laboratory experiments, we evaluated possible asymmetries in the outcome of heterospecific encounters between males and females, and investigated whether chemical signalling could function as a premating barrier between the two species. Males of P. azul were unable to discriminate conspecific from heterospecific female draglines, which resulted in wasted time and energy in nuptial gift construction. Males of P. ornata incurred a higher cost for discrimination mistakes because most of them were attacked by heterospecific females; 95% lost the nuptial gift upon the attack and 33% were preyed upon. This pattern is probably a consequence of differences in body size between males and females of each species. Both species showed erroneous female choice, but only P. ornata females courted heterospecific males, which are considerably larger than conspecific males and may resemble high-quality mating partners. Males of P. ornata also made discrimination mistakes, but at a much lower frequency compared to P. azul males. The selective pressure for precise recognition of conspecific female signs is probably stronger on P. ornata males because misdirected courtship may increase their chances of encountering predatory heterospecific females. This study provides the first detailed evidence of reproductive interference between two reproductively isolated spider species, showing that the costs paid by individuals of different sexes and different species are highly asymmetric. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
Background and objectives: Extracorporeal circulation (ECC) may change drug pharmacokinetics as well as brain function. The objectives of this study are to compare emergence time and postoperative sedation intensity assessed by the bispectral index (BIS) and the Ramsay sedation scale in patients undergoing myocardial revascularization (MR) with or without ECC. Method: Ten patients undergoing MR with ECC (ECC group) and 10 with no ECC (no-ECC group) were administered with sufentanyl, propofol 2.0 mu g.mL(-1) and pancuronium target controlled infusion. After surgery, propofol infusion was reduced to 1 mu g.mL(-1) and suspended when extubation was indicated. Patients BIS, Ramsay scale and time to wake up were assessed. Results: The ECC group showed lower BIS values beginning at 60 minutes after surgery (no-ECC = 66 +/- 13 and ECC = 53 +/- 14, p = 0.01) until 120 minutes after infusion (no-ECC = 85 +/- 8 and ECC = 73 +/- 12, p = 0.02). Sedation level measured by the Ramsay scale was higher in the ECC group at 30 minutes after the end of the surgery (no-ECC = 5 +/- 1 and ECC = 6 +/- 0, p = 0.021), at the end of infusion (no-ECC = 5 +/- 1 and ECC = 6 +/- 1, p = 0.012) and 5 minutes after the end of infusion (no-ECC = 4 +/- 1 and ECC = 5 +/- 0.42, p = 0.039). Emergence from anesthesia time was higher in the ECC group (no-ECC = 217 +/- 81 and ECC = 319 +/- 118, p = 0.038). Conclusions: There was a higher intensity of sedation after the end of surgery and a longer wake up time in ECC group, suggesting changes in the pharmacokinetics of propofol or effects of ECC on central nervous system.
Resumo:
Using a first-principles theoretical model the adsorption of a methyl radical on different sized silver nanoparticles is compared to the adsorption of the same radical on model surfaces. Calculations of our structural, dynamical and electronic properties indicated that small changes in the local environment will lead to small changes in infrared (IR) wavenumbers, but in dramatic changes in the IR signal. Our calculations indicate the lower the adsorption site coordination, the higher is the signal strength, suggesting that small changes in the electronic charge distribution will result in bigger changes in the polarizability and hence in the spectroscopic signal intensity. This effect explains, among others, the signal magnification observed for nanoparticles in surface enhanced Raman spectroscopic (SERS) experiments.
Resumo:
We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.
Resumo:
This paper presents a performance analysis of a baseband multiple-input single-output ultra-wideband system over scenarios CM1 and CM3 of the IEEE 802.15.3a channel model, incorporating four different schemes of pre-distortion: time reversal, zero-forcing pre-equaliser, constrained least squares pre-equaliser, and minimum mean square error pre-equaliser. For the third case, a simple solution based on the steepest-descent (gradient) algorithm is adopted and compared with theoretical results. The channel estimations at the transmitter are assumed to be truncated and noisy. Results show that the constrained least squares algorithm has a good trade-off between intersymbol interference reduction and signal-to-noise ratio preservation, providing a performance comparable to the minimum mean square error method but with lower computational complexity. Copyright (C) 2011 John Wiley & Sons, Ltd.