975 resultados para Shiga toxin-producing Escherichia coli
Resumo:
Pesquisou-se a ocorrência de Escherichia coli (EPEC, EIEC, O157) em água e peixe (pele, trato digestivo e músculo) de pesque-pagues da microbacia do Córrego Rico, Jaboticabal (SP). Foram isoladas 115 cepas de E. coli, entre as quais 49 (43%) foram sorogrupadas como EPEC. Os sorogrupos mais frequentes foram O125, O126 e O158. Dentre as amostras testadas, 60 (52%) apresentaram resistência simultânea a dois antimicrobianos. A análise de correspondência foi realizada com o intuito de verificar as possíveis correspondências envolvendo o local de isolamento, sorogrupos e multirresistência e, com isso, pôde-se observar que o músculo apresentou menor correspondência com os demais fatores analisados. Porém, o isolamento de sorogrupos EPEC neste estudo representa risco à saúde dos consumidores.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biological processes are complex and possess emergent properties that can not be explained or predict by reductionism methods. To overcome the limitations of reductionism, researchers have been used a group of methods known as systems biology, a new interdisciplinary eld of study aiming to understand the non-linear interactions among components embedded in biological processes. These interactions can be represented by a mathematical object called graph or network, where the elements are represented by nodes and the interactions by edges that link pair of nodes. The networks can be classi- ed according to their topologies: if node degrees follow a Poisson distribution in a given network, i.e. most nodes have approximately the same number of links, this is a random network; if node degrees follow a power-law distribution in a given network, i.e. small number of high-degree nodes and high number of low-degree nodes, this is a scale-free network. Moreover, networks can be classi ed as hierarchical or non-hierarchical. In this study, we analised Escherichia coli and Saccharomyces cerevisiae integrated molecular networks, which have protein-protein interaction, metabolic and transcriptional regulation interactions. By using computational methods, such as MathematicaR , and data collected from public databases, we calculated four topological parameters: the degree distribution P(k), the clustering coe cient C(k), the closeness centrality CC(k) and the betweenness centrality CB(k). P(k) is a function that calculates the total number of nodes with k degree connection and is used to classify the network as random or scale-free. C(k) shows if a network is hierarchical, i.e. if the clusterization coe cient depends on node degree. CC(k) is an indicator of how much a node it is in the lesse way among others some nodes of the network and the CB(k) is a pointer of how a particular node is among several ...(Complete abstract click electronic access below)
Resumo:
The reducionism method has helped in the clari cation of functioning of many biological process. However, such process are extremely complex and have emergent properties that can not be explained or even predicted by reducionism methods. To overcome these limits, researchers have been used a set of methods known as systems biology, a new area of biology aiming to understand the interactions between the multiple components of biological processes. These interactions can be represented by a mathematical object called graph or network, where the interacting elements are represented by a vertex and the interactions by edges that connect a pair of vertexes. Into graphs it is possible to nd subgraphs, occurring in complex networks at numbers that are signi cantly higher than those in randomized networks, they are de ned as motifs. As motifs in biological networks may represent the structural units of biological processess, their detection is important. Therefore, the aim of this present work was detect, count and classify motifs present in biological integrated networks of bacteria Escherichia coli and yeast Saccharomyces cere- visiae. For this purpose, we implemented codes in MathematicaR and Python environments for detecting, counting and classifying motifs in these networks. The composition and types of motifs detected in these integrated networks indicate that such networks are organized in three main bridged modules composed by motifs in which edges are all the same type. The connecting bridges are composed by motifs in which the types of edges are diferent
Resumo:
Escherichia coli O157:H7 is a foodborne pathogen associated with enteritis in humans, ranging from a mild to bloody diarrhea to hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and even death. Large E. coli O157:H7 outbreaks have been reported worldwide and are frequently associated with consumption of undercooked beef. Cattle are a major reservoir of the pathogen, which is found in the intestinal tract of the animal. The carcasses can be contaminated with feces during the slaughter and production process. Ground beef remains the most common vehicle. The purpose of this study was to determine the E. coli O157:H7 importance associated to human illness and productivity losses to the meat industry, as well as identifying mechanisms of contamination related to beef and strategies to improve the safety of beef products
Resumo:
A Doença Inflamatória Intestinal (DII) engloba um grupo de processos inflamatórios crônicos de causas não conhecidas. Duas formas clínicas da DII são reconhecidas atualmente: a Retocolite Ulcerativa (RU) e a Doença de Crohn (DC). Foram isoladas de 348 amostras, dos quais 17 foram diagnosticados com com DC, e 40 com RU. Os 41 restantes apresentavam outras patologias e compreenderam o grupo controle. Entre as amostras que apresentaram adesão positiva, 110 delas apresentaram padrão de Adesão Agregativa (AA) e 19 apresentaram padrão de Adesão Difusa (AD). A cepa, DII/013, apresentou o padrão de adesão agregativo e invisibilidade média 18 vezes superior à cepa da EIEC. Quando observada ao microscópio eletrônico, bactérias intracelulares foram detectadas na amostra. Assim, a maioria das amostras apresentaram padrão de adesão agregativo, indicando juntamente com estudos anteriores, que esse padrão teria uma possível relação com a patogenicidade da bactéria em relação a DII
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)