921 resultados para Shadowing (Differentiable dynamical systems)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently more than half of Electronic Health Record (EHR) projects fail. Most of these failures are not due to flawed technology, but rather due to the lack of systematic considerations of human issues. Among the barriers for EHR adoption, function mismatching among users, activities, and systems is a major area that has not been systematically addressed from a human-centered perspective. A theoretical framework called Functional Framework was developed for identifying and reducing functional discrepancies among users, activities, and systems. The Functional Framework is composed of three models – the User Model, the Designer Model, and the Activity Model. The User Model was developed by conducting a survey (N = 32) that identified the functions needed and desired from the user’s perspective. The Designer Model was developed by conducting a systemic review of an Electronic Dental Record (EDR) and its functions. The Activity Model was developed using an ethnographic method called shadowing where EDR users (5 dentists, 5 dental assistants, 5 administrative personnel) were followed quietly and observed for their activities. These three models were combined to form a unified model. From the unified model the work domain ontology was developed by asking users to rate the functions (a total of 190 functions) in the unified model along the dimensions of frequency and criticality in a survey. The functional discrepancies, as indicated by the regions of the Venn diagrams formed by the three models, were consistent with the survey results, especially with user satisfaction. The survey for the Functional Framework indicated the preference of one system over the other (R=0.895). The results of this project showed that the Functional Framework provides a systematic method for identifying, evaluating, and reducing functional discrepancies among users, systems, and activities. Limitations and generalizability of the Functional Framework were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate characterization of the radio channel in tunnels is of great importance for new signaling and train control communications systems. To model this environment, measurements have been taken at 2.4 GHz in a real environment in Madrid subway. The measurements were carried out with four base station transmitters installed in a 2-km tunnel and using a mobile receiver installed on a standard train. First, with an optimum antenna configuration, all the propagation characteristics of a complex subway environment, including near shadowing, path loss,shadow fading, fast fading, level crossing rate (LCR), and average fade duration (AFD), have been measured and computed. Thereafter, comparisons of propagation characteristics in a double-track tunnel (9.8-m width) and a single-track tunnel (4.8-m width) have been made. Finally, all the measurement results have been shown in a complete table for accurate statistical modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce a dynamical complexity measure, namely the degree of team cooperation, in the aim of investigating "how much" the components of a grammar system cooperate when forming a team in the process of generating terminal words. We present several results which strongly suggest that this measure is trivial in the sense that the degree of team cooperation of any language is bounded by a constant. Finally, we prove that the degree of team cooperation of a given cooperating/distributed grammar system cannot be algorithmically computed and discuss a decision problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method that provides athree-dimensional representation ofthe basin ofattraction of a dynamical system from experimen tal data was applied tothe problem ofdynamic balance restoration. The method isbased onthe density ofthe data onthe phase space ofthe system under study and makes use ofmodeling and numerical curve fittingtools.For the dynamical system ofbalance restora tion,the shape and the size of the basin of attraction depend on the dynamics of the postural restoring mechanisms and contain important information regarding the biomechanical,as well as the neuromuscular condition of the individual. The aim ofthis work was toexamine the ability ofthe method todetect, through the observed changes inthe shape and/or the size ofthe calculated basins of attraction, (a)the inherent differences between different systems (in the current application, postural restoring systems of different individuals)and (b)induced chan ges in the same system (thepostural restoring system of an individual).The results ofthe study confirm the validity of the method and furthermore justify its robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the existence of generalized synchronization in systems that act as mediators between two dynamical units that, in turn, show complete synchronization with each other. These are the so-called relay systems. Specifically, we analyze the Lyapunov spectrum of the full system to elucidate when complete and generalized synchronization appear. We show that once a critical coupling strength is achieved, complete synchronization emerges between the systems to be synchronized, and at the same point, generalized synchronization with the relay system also arises. Next, we use two nonlinear measures based on the distance between phase-space neighbors to quantify the generalized synchronization in discretized time series. Finally, we experimentally show the robustness of the phenomenon and of the theoretical tools here proposed to characterize it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building integrated photovoltaic (BIPV) systems are a relevant application of photovoltaics. In countries belonging to the International Energy Agency countries, 24% of total installed PV power corresponds to BIPV systems. Electricity losses caused by shadows over the PV generator have a significant impact on the performance of BIPV systems, being the major source of electricity losses. This paper presents a methodology to estimate electricity produced by BIPV systems which incorporates a model for shading losses. The proposed methodology has been validated on a one year study with real data from two similar PV systems placed on the south façade of a building belonging to the Technical University of Madrid. This study has covered all weather conditions: clear, partially overcast and fully overcast sky. Results of this study are shown at different time scales, resulting that the errors committed by the best performing model are below 1% and 3% in annual and daily electricity estimation. The use of models which account for the reduced performance at low irradiance levels also improves the estimation of generated electricity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows the importance of a holistic comprehension of the Earth as a living planet, where man inhabits and is exposed to environmental incidences of different nature. The aim of the paper here summarized is a reflection on all these concepts and scientific considerations related to the important role of men in the handling of natural hazards. Our Planet is an unstable and dynamical system highly sensitive to initial conditions, as proposed by Chaos theory (González-Miranda 2004); it is a complex organic whole, which responds to minimal variations which can affect several natural phenomena such as plate tectonics, solar flares, fluid turbulences, landscape formation, forest fires, growth and migration of populations and biological evolution. This is known as the “butterfly effect” (Lorenz 1972), which means that a small change of the system causes a chain of events leading to large-scale unpredictable consequences. The aim of this work is dwelling on the importance of the knowledge of these natural and catastrophic geological, biological and human systems so much sensible to equilibrium conditions, to prevent, avoid and mend their effects, and to face them in a resilient way

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this Project is, first and foremost, to disclose the topic of nonlinear vibrations and oscillations in mechanical systems and, namely, nonlinear normal modes NNMs to a greater audience of researchers and technicians. To do so, first of all, the dynamical behavior and properties of nonlinear mechanical systems is outlined from the analysis of a pair of exemplary models with the harmonic balanced method. The conclusions drawn are contrasted with the Linear Vibration Theory. Then, it is argued how the nonlinear normal modes could, in spite of their limitations, predict the frequency response of a mechanical system. After discussing those introductory concepts, I present a Matlab package called 'NNMcont' developed by a group of researchers from the University of Liege. This package allows the analysis of nonlinear normal modes of vibration in a range of mechanical systems as extensions of the linear modes. This package relies on numerical methods and a 'continuation algorithm' for the computation of the nonlinear normal modes of a conservative mechanical system. In order to prove its functionality, a two degrees of freedom mechanical system with elastic nonlinearities is analized. This model comprises a mass suspended on a foundation by means of a spring-viscous damper mechanism -analogous to a very simplified model of most suspended structures and machines- that has attached a mass damper as a passive vibration control system. The results of the computation are displayed on frequency energy plots showing the NNMs branches along with modal curves and time-series plots for each normal mode. Finally, a critical analysis of the results obtained is carried out with an eye on devising what they can tell the researcher about the dynamical properties of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.