14 resultados para Shadowing (Differentiable dynamical systems)

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:

i) the mean exit time

ii) the phase-space distribution of exit locations.

When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.

Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.

The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows.

To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally generated starting jet. Since most naturally occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.

The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.

The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.

The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, computationally efficient approximate methods are developed for analyzing uncertain dynamical systems. Uncertainties in both the excitation and the modeling are considered and examples are presented illustrating the accuracy of the proposed approximations.

For nonlinear systems under uncertain excitation, methods are developed to approximate the stationary probability density function and statistical quantities of interest. The methods are based on approximating solutions to the Fokker-Planck equation for the system and differ from traditional methods in which approximate solutions to stochastic differential equations are found. The new methods require little computational effort and examples are presented for which the accuracy of the proposed approximations compare favorably to results obtained by existing methods. The most significant improvements are made in approximating quantities related to the extreme values of the response, such as expected outcrossing rates, which are crucial for evaluating the reliability of the system.

Laplace's method of asymptotic approximation is applied to approximate the probability integrals which arise when analyzing systems with modeling uncertainty. The asymptotic approximation reduces the problem of evaluating a multidimensional integral to solving a minimization problem and the results become asymptotically exact as the uncertainty in the modeling goes to zero. The method is found to provide good approximations for the moments and outcrossing rates for systems with uncertain parameters under stochastic excitation, even when there is a large amount of uncertainty in the parameters. The method is also applied to classical reliability integrals, providing approximations in both the transformed (independently, normally distributed) variables and the original variables. In the transformed variables, the asymptotic approximation yields a very simple formula for approximating the value of SORM integrals. In many cases, it may be computationally expensive to transform the variables, and an approximation is also developed in the original variables. Examples are presented illustrating the accuracy of the approximations and results are compared with existing approximations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.

Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.

A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.

The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.

FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.

The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While some of the deepest results in nature are those that give explicit bounds between important physical quantities, some of the most intriguing and celebrated of such bounds come from fields where there is still a great deal of disagreement and confusion regarding even the most fundamental aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as to whether the limitations associated with Heisenberg's Uncertainty Principle derive from an inherent randomness in physics, or rather from limitations in the measurement process itself, resulting from phenomena like back action. Likewise, the second law of thermodynamics makes a statement regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-accepted definition of equilibrium, nor an adequate explanation of how a system with underlying microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution.

Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use dynamical systems theory to investigate how the very simplest of systems, even with no physical constraints, are characterized by bounds that give limits to the ability to make measurements on them. Using an existing interpretation, we start by examining how dissipative systems can be viewed as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation result plays a central role in a measurement model that we examine, in particular describing how noise is inevitably injected into a system during a measurement, noise that can be viewed as originating either from the randomness of the many degrees of freedom of the measurement device, or of the environment. This noise constitutes one component of measurement back action, and ultimately imposes limits on measurement uncertainty. Depending on the assumptions we make about active devices, and their limitations, this back action can be offset to varying degrees via control. It turns out that using active devices to reduce measurement back action leads to estimation problems that have non-zero uncertainty lower bounds, the most interesting of which arise when the observed system is lossless. One such lower bound, a main contribution of this work, can be viewed as a classical version of a Heisenberg uncertainty relation between the system's position and momentum. We finally also revisit the murky question of how macroscopic dissipation appears from lossless dynamics, and propose alternative approaches for framing the question using existing systematic methods of model reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.

The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.

The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.

The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines several examples of systems in which non-Abelian magnetic flux and non-Abelian forms of the Aharonov-Bohm effect play a role. We consider the dynamical consequences in these systems of some of the exotic phenomena associated with non-Abelian flux, such as Cheshire charge holonomy interactions and non-Abelian braid statistics. First, we use a mean-field approximation to study a model of U(2) non-Abelian anyons near its free-fermion limit. Some self-consistent states are constructed which show a small SU(2)-breaking charge density that vanishes in the fermionic limit. This is contrasted with the bosonic limit where the SU(2) asymmetry of the ground state can be maximal. Second, a global analogue of Chesire charge is described, raising the possibility of observing Cheshire charge in condensedmatter systems. A potential realization in superfluid He-3 is discussed. Finally, we describe in some detail a method for numerically simulating the evolution of a network of non-Abelian (S3) cosmic strings, keeping careful track of all magnetic fluxes and taking full account of their non-commutative nature. I present some preliminary results from this simulation, which is still in progress. The early results are suggestive of a qualitatively new, non-scaling behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.