970 resultados para Semiconductor wafers
Resumo:
This work presents studies of GeO2-PbO thin films deposited by RF Sputtering for fabrication of rib-waveguide. GeO2-PbO vitreous targets were prepared melting the reagents in alumina crucible. Thin films were deposited at room temperature using pure Ar plasma, at 5 mTorr pressure and RF power of 40 W on substrates of (100) silicon wafers. Rutherford Backscattering Spectroscopy (RBS) analyses were employed for the determination of the chemical elements present in the GeO2-PbO film. Geometry and sidewall of the waveguides were investigated by Scanning Electron Microscopy (SEM). The mode propagation in the waveguide structure of GeO2-PbO thin films was analyzed using an integrated optic simulation software to obtain a monomode propagation. © The Electrochemical Society.
Resumo:
In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 and 3000 ) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs. © 2010 IOP Publishing Ltd.
Resumo:
Includes bibliography
Resumo:
This paper proposes a bridgeless boost interleaved PFC (power factor correction) converter with variable duty cycle control. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of converters cells allows division of efforts in semiconductor devices and reduction of weight and volume of the input EMI filter. The use of variable duty cycle control has the functions of regulating the output voltage and eliminating the low order harmonic components that appears in the input current of the common interleaved power factor converters working in Discontinuous Conduction Mode (DCM). The simulation results of the proposed converter presented high power factor and a good transient response in relation to the output voltage regulation in presence of high load variations and supply voltage variations. © 2011 IEEE.
Resumo:
The aim of this study was to evaluate the effect of specific parameters of low-level laser therapy (LLLT) on biofilms formed by Streptococcus mutans, Candida albicans or an association of both species. Single and dual-species biofilms - SSB and DSB - were exposed to laser doses of 5, 10 or 20 J/cm 2 from a near infrared InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm, 0.04 W). After irradiation, the analysis of biobilm viability (MTT assay), biofilm growth (cfu/mL) and cell morphology (SEM) showed that LLLT reduced cell viability as well as the growth of biofilms. The response of S. mutans (SSB) to irradiation was similar for all laser doses and the biofilm growth was dose dependent. However, when associated with C. albicans (DSB), S. mutans was resistant to LLLT. For C. albicans, the association with S. mutans (DSB) caused a significant decrease in biofilm growth in a dose-dependent fashion. The morphology of the microorganisms in the SSB was not altered by LLLT, while the association of microbial species (DSB) promoted a reduction in the formation of C. albicans hyphae. LLLT had an inhibitory effect on the microorganisms, and this capacity can be altered according to the interactions between different microbial species.
Resumo:
This paper presents theoretical evaluation and experimental results to the proposed bridgeless interleaved boost PFC (power factor correction) converter. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of the converter cells allows division of the current stress in semiconductor devices and reduction of weight and volume of the input EMI filter. In each cell of the converter, the inductor current operates in discontinuous conduction mode (DCM), which eliminates turn-on switching losses and the effects of reverse recovery in semiconductors, increasing the efficiency of the converter. The experimental results show the power factor of 0.96 for employed voltage ratio and an efficiency of 95.2 % for nominal load conditions. © 2012 IEEE.
Resumo:
Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed. © 2012 Materials Research Society.
Resumo:
The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Purpose: To comparatively and prospectively compare in a randomized clinical trial, dentin hypersensitivity after treatment with three in-office bleaching systems, based on hydrogen peroxide at different concentrations, with and without light source activation. Methods: 88 individuals were included according to inclusion and exclusion criteria. Subjects were randomly divided into the following three treatment groups: Group 1 was treated with three 15-minute applications of hydrogen peroxide at 15% with titanium dioxide (Lase Peroxide Lite) that was light-activated (Light Plus Whitening Lase) with five cycles of 1 minute and 30 seconds each cycle, giving a total treatment time of 45 minutes; Group 2 was treated with three 10-minute applications of hydrogen peroxide at 35% (Lase Peroxide Sensy), activated by light (LPWL) same activation cycles than Group 1, with a total treatment time of 30 minutes; Group 3 was treated with only one application for 45 minutes of hydrogen peroxide at 35% (Whitegold Office) without light activation. Each subject underwent one session of bleaching on the anterior teeth according to the manufacturers' instructions. Dentin sensitivity was recorded with a visual analogue scale (VAS) at baseline, immediately after, and at 7 and 30 days after treatment using a stimulus of an evaporative blowing triple syringe for 3 seconds on the upper central incisors from a distance of 1 cm. A Kruskal-Wallis test followed by Mann-Whitney test was performed for statistical analysis. Results: All groups showed increased sensitivity immediately after treatment. Group 1 displayed less changes relative to baseline with no significant differences (P= 0.104). At 7 and 30 days after treatment, a comparison of VAS values indicated no significant differences between all groups (P= 0.598 and 0.489, respectively).
Resumo:
Thin films of tin dioxide (SnO2) are deposited by the sol-gel-dip-coating technique, along with GaAs layers, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, combining the emission from the rare-earth doped transparent oxide (Eu3+-doped SnO2 presents very efficient red emission) with a high mobility semiconductor. The advantage of this structure is the possibility of separation of the rare-earth emission centers from the electron scattering, leading to a strongly indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films, and the monochromatic light irradiation (266 nm) at low temperature of the heterojunction GaAs/SnO2:Eu leads to intense conductivity increase. Scanning electron microscopy (SEM) of the heterojunction cross section shows high adherence and good morphological quality of the interfaces substrate/SnO2 and SnO2/GaAs, even though the atomic force microscopy (AFM) image of the GaAs surface shows disordered particles, which increases with sample thickness. On the other hand, the good morphology of the SnO2:Eu surface, shown by AFM, assures the good electrical performance of the heterojunction. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels at the semiconductors interface, which may exhibit two-dimensional electron gas (2DEG) behavior. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The objective of this study was to apply low-level laser therapy (LLLT) to accelerate the recovery process of a child patient with Bell's palsy (BP). Design: This was a prospective study. Subject: The subject was a three-year-old boy with a sudden onset of facial asymmetry due to an unknown cause. Materials and methods: The low-level laser source used was a gallium aluminum arsenide semiconductor diode laser device (660 nm and 780 nm). No steroids or other medications were given to the child. The laser beam with a 0.04-cm2 spot area, and an aperture with approximately 1-mm diameter, was applied in a continuous emission mode in direct contact with the facial area. The duration of a laser session was between 15 and 30 minutes, depending on the chosen points and the area being treated. Light was applied 10 seconds per point on a maximum number of 80 points, when the entire affected (right) side of the face was irradiated, based on the small laser beam spot size. According to the acupuncture literature, this treatment could also be carried out using 10-20 Chinese acupuncture points, located unilaterally on the face. In this case study, more points were used because the entire affected side of the face (a large area) was irradiated instead of using acupuncture points. Outcome measures: The House-Brackmann grading system was used to monitor the evolution of facial nerve motor function. Photographs were taken after every session, always using the same camera and the same magnitude. The three-year-old boy recovered completely from BP after 11 sessions of LLLT. There were 4 sessions a week for the first 2 weeks, and the total treatment time was 3 weeks. Results: The result of this study was the improvement of facial movement and facial symmetry, with complete reestablishment to normality. Conclusions: LLLT may be an alternative to speed up facial normality in pediatric BP. © Copyright 2013, Mary Ann Liebert, Inc. 2013.
Resumo:
Introduction: Laser hair removal is becoming an increasingly popular alternative to traditional methods such as shaving, waxing, among other methods. Semiconductor diode lasers are considered the most efficient light sources available and are especially well suited for clinical applications including hair reduction. The effectiveness of laser hair reduction depends on many variables, including the skin type of the patient. Material and Methods: A patient with Fitzpatrick Skin Type IV was submitted to laser hair removal of the arms with a high-power diode laser system with long pulses with a wavelength of 800 nm, a fluence of 40 J/cm2 and a pulse width of 20 ms. A 12-month follow-up assessment was performed and included photography and questionnaire. Results: Hypopigmentation was observed after a single laser hair removal section. After 6 months with the area totally covered, a gradual suntan with a sun screen lotion with an SPF of 15 was prescribed by the dermatologist. After 12 months of the initial treatment, a complete recovery of the hypopigmentation was achieved. Conclusion: Although a safe procedure, lasers for hair removal may be associated with adverse side effects including undesired pigment alterations. Before starting a laser hair removal treatment, patients seeking the eradication of hair should be informed that temporary, and possibly permanent, pigmentary changes may occur. © 2013 Informa UK, Ltd.
Resumo:
The silicon-based gate-controlled lateral bipolar junction transistor (BJT) is a controllable four-terminal photodetector with very high responsivity at low-light intensities. It is a hybrid device composed of a MOSFET, a lateral BJT, and a vertical BJT. Using sufficient gate bias to operate the MOS transistor in inversion mode, the photodetector allows for increasing the photocurrent gain by 106 at low light intensities when the base-emitter voltage is smaller than 0.4 V, and BJT is off. Two operation modes, with constant voltage bias between gate and emitter/source terminals and between gate and base/body terminals, allow for tuning the photoresponse from sublinear to slightly above linear, satisfying the application requirements for wide dynamic range, high-contrast, or linear imaging. MOSFETs from a standard 0.18-μm triple-well complementary-metal oxide semiconductor technology with a width to length ratio of 8 μm /2 μm and a total area of ∼ 500μm2 are used. When using this area, the responsivities are 16-20 kA/W. © 2001-2012 IEEE.
Resumo:
The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.