875 resultados para Segmentation Ability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of video editing software has resulted in a necessity for faster and more efficient editing tools. Here, we propose a lightweight high-quality video indexing tool that is suitable for video editing software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of video editing software requires faster and more efficient editing tools. As a first step, these tools perform a temporal segmentation in shots that allows a later building of indexes describing the video content. Here, we propose a novel real-time high-quality shot detection strategy, suitable for the last generation of video editing software requiring both low computational cost and high quality results. While abrupt transitions are detected through a very fast pixel-based analysis, gradual transitions are obtained from an efficient edge-based analysis. Both analyses are reinforced with a motion analysis that helps to detect and discard false detections. This motion analysis is carried out exclusively over a reduced set of candidate transitions, thus maintaining the computational requirements demanded by new applications to fulfill user needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter ?. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to develop a probabilistic modeling framework for the segmentation of structures of interest from a collection of atlases. Given a subset of registered atlases into the target image for a particular Region of Interest (ROI), a statistical model of appearance and shape is computed for fusing the labels. Segmentations are obtained by minimizing an energy function associated with the proposed model, using a graph-cut technique. We test different label fusion methods on publicly available MR images of human brains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method to segment airplane radar tracks in high density terminal areas where the air traffic follows trajectories with several changes in heading, speed and altitude. The radar tracks are modelled with different types of segments, straight lines, cubic spline function and shape preserving cubic function. The longitudinal, lateral and vertical deviations are calculated for terminal manoeuvring area scenarios. The most promising model of the radar tracks resulted from a mixed interpolation using straight lines for linear segments and spline cubic functions for curved segments. A sensitivity analysis is used to optimise the size of the window for the segmentation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel background modeling system that uses a spatial grid of Support Vector Machines classifiers for segmenting moving objects, which is a key step in many video-based consumer applications. The system is able to adapt to a large range of dynamic background situations since no parametric model or statistical distribution are assumed. This is achieved by using a different classifier per image region that learns the specific appearance of that scene region and its variations (illumination changes, dynamic backgrounds, etc.). The proposed system has been tested with a recent public database, outperforming other state-of-the-art algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional Text-To-Speech (TTS) systems have been developed using especially-designed non-expressive scripted recordings. In order to develop a new generation of expressive TTS systems in the Simple4All project, real recordings from the media should be used for training new voices with a whole new range of speaking styles. However, for processing this more spontaneous material, the new systems must be able to deal with imperfect data (multi-speaker recordings, background and foreground music and noise), filtering out low-quality audio segments and creating mono-speaker clusters. In this paper we compare several architectures for combining speaker diarization and music and noise detection which improve the precision and overall quality of the segmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los medios sociales han revolucionado la manera en la que los consumidores se relacionan entre sí y con las marcas. Las opiniones publicadas en dichos medios tienen un poder de influencia en las decisiones de compra tan importante como las campañas de publicidad. En consecuencia, los profesionales del marketing cada vez dedican mayores esfuerzos e inversión a la obtención de indicadores que permitan medir el estado de salud de las marcas a partir de los contenidos digitales generados por sus consumidores. Dada la naturaleza no estructurada de los contenidos publicados en los medios sociales, la tecnología usada para procesar dichos contenidos ha menudo implementa técnicas de Inteligencia Artificial, tales como algoritmos de procesamiento de lenguaje natural, aprendizaje automático y análisis semántico. Esta tesis, contribuye al estado de la cuestión, con un modelo que permite estructurar e integrar la información publicada en medios sociales, y una serie de técnicas cuyos objetivos son la identificación de consumidores, así como la segmentación psicográfica y sociodemográfica de los mismos. La técnica de identificación de consumidores se basa en la huella digital de los dispositivos que utilizan para navegar por la Web y es tolerante a los cambios que se producen con frecuencia en dicha huella digital. Las técnicas de segmentación psicográfica descritas obtienen la posición en el embudo de compra de los consumidores y permiten clasificar las opiniones en función de una serie de atributos de marketing. Finalmente, las técnicas de segmentación sociodemográfica permiten obtener el lugar de residencia y el género de los consumidores. ABSTRACT Social media has revolutionised the way in which consumers relate to each other and with brands. The opinions published in social media have a power of influencing purchase decisions as important as advertising campaigns. Consequently, marketers are increasing efforts and investments for obtaining indicators to measure brand health from the digital content generated by consumers. Given the unstructured nature of social media contents, the technology used for processing such contents often implements Artificial Intelligence techniques, such as natural language processing, machine learning and semantic analysis algorithms. This thesis contributes to the State of the Art, with a model for structuring and integrating the information posted on social media, and a number of techniques whose objectives are the identification of consumers, as well as their socio-demographic and psychographic segmentation. The consumer identification technique is based on the fingerprint of the devices they use to surf the Web and is tolerant to the changes that occur frequently in such fingerprint. The psychographic profiling techniques described infer the position of consumer in the purchase funnel, and allow to classify the opinions based on a series of marketing attributes. Finally, the socio-demographic profiling techniques allow to obtain the residence and gender of consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La aparición y avance de la enfermedad del marchitamiento del pino (Pine Wilt Desease, PWD), causada por Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae), el nematodo de la madera del pino (NMP), en el suroeste de Europa, ha puesto de manifiesto la necesidad de estudiar la fenología y la dispersión de su único vector conocido en Europa, Monochamus galloprovincialis (Col., Cerambycidae). El análisis de 12 series de emergencias entre 2010 y 2014, registradas en Palencia, València y Teruel, con material procedente de diversos puntos de la península ibérica, demostró una alta variabilidad en la fenología de M. galloprovincialis y la divergencia térmica respecto de las poblaciones portuguesas. Para éstas, el establecimiento de los umbrales térmicos de desarrollo de las larvas post-dormantes del vector (12,2 y 33,5ºC) permitió la predicción de la emergencia mediana para la fecha en la que se acumulaban de 822 grados-día. Ninguna de las series analizadas en este trabajo necesitó de dichos grados-día estimados para la emergencia mediana. Asimismo, la emergencia se adelantó en las regiones más calurosas, mientras que se retrasó en las zonas más templadas. Más allá de la posible variabilidad entre poblaciones locales peninsulares, se detectaron indicios de que la diferencia en la acumulación de calor durante el otoño puede afectar el grado de maduración de las larvas invernantes, y su posterior patrón temporal de emergencia. Por último, también fueron observados comportamientos de protandria en las emergencias. Respecto a la fenología de su vuelo, entre los años 2010 y 2015, fueron ejecutados un total de 8 experimentos de captura de M. galloprovincialis mediante trampas cebadas con atrayentes en diferentes regiones (Castellón, Teruel, Segovia y Alicante) permitiendo el seguimiento del periodo de vuelo. Su análisis permitió constatar la disminución de las capturas y el acortamiento del periodo de vuelo con la altitud, el inicio del vuelo en el mes de mayo/junio a partir de los 14ºC de temperatura media diaria, la influencia de las altas temperaturas en la disminución de las capturas estivales (potencial causante de perfiles bimodales en las curvas de vuelo en las zonas menos frías), la evolución de la proporción de sexos a lo largo del periodo de vuelo (que muestra una mayor captura de hembras al inicio y de machos al final) y el comportamiento diurno y ligado a las altas temperaturas del vuelo circadiano del insecto. Dos redes de muestreo sistemático de insectos saproxílicos instaladas en la Comunitat Valencia (Red MUFFET, 15 parcelas, año 2013) y en Murcia (Red ESFP, 20 parcelas, años 2008-2010) permitieron el estudio de la comunidad de insectos relacionada con M. galloprovincialis. Cada una de las parcelas contaba con una trampa cebada con atrayentes y una estación meteorológica. El registro de más de 250 especies de coleópteros saproxílicos demostró el potencial que tiene el empleo de redes de trampas vigía para la detección temprana de organismos exóticos, además de permitir la caracterización y evaluación de las comunidades de entomofauna útil, representando una de las mejores herramientas de la gestión integrada de plagas. En este caso, la comunidad de saproxílicos estudiada mostró ser muy homogénea respecto a la variación ambiental de las zonas de muestreo, y que pese a las pequeñas variaciones entre las comunidades de los diferentes ecosistemas, el rol que M. galloprovincialis desempeña en ellas a lo largo de todo el gradiente estudiado es el mismo. Con todo, el análisis mediante redes de interacción mostró su relevancia ecológica al actuar de conector entre los diferentes niveles tróficos. Por último, un total de 12 experimentos de marcaje-liberación-recaptura desarrollados entre 2009 y 2012 en Castellón, Teruel, Valencia y Murcia permitieron evaluar el comportamiento dispersivo de M. galloprovincialis. Las detecciones mediante trampas cebadas de los insectos liberados se dieron por lo menos 8 días después de la emergencia. La abundancia de población pareció relacionada con la continuidad, la naturalización de la masa, y con la afección previa de incendios. La dispersión no estuvo influida por la dirección ni la intensidad de los vientos dominantes. La abundancia de material hospedante (en lo referente a las variables de masa y a los índices de competencia) influyó en la captura del insecto en paisajes fragmentados, aunque la ubicación de las trampas optimizó el número de capturas cuando se ubicaron en el límite de la masa y en zonas visibles. Por último también se constató que M. galloprovincialis posee suficiente capacidad de dispersión como para recorrer hasta 1500 m/día, llegando a alcanzar distancias máximas de 13600m o de 22100 m. ABSTRACT The detection and expansion of the Pine Wilt Desease (PWD), caused by Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae), Pine Wood Nematode (PWN), in southwestern Europe since 1999, has triggered off the study of the phenology and the dispersion of its unique vector in the continent, Monochamus galloprovincialis (Coleoptera, Cerambycidae). The analysis of 12 emergence series between 2010 and 2014 registered in Palencia, Teruel and Valencia (Spain), registered from field colonized material collected at several locations of the Iberian Peninsula, showed a high variability in the emergence phenology of M. galloprovincialis. In addition, these patterns showed a very acute thermal divergence regarding a development model fitted earlier in Portugal. Such model forecasted the emergence of 50% of M. galloprovincialis individuals in the Setúbal Peninsula (Portugal) when an average of 822 degree-days (DD) were reached, based on the accumulation of heat from the 1st of March until emergence and lower and upper thresholds of 12.2 ºC and 33,5 °C respectively. In our results, all analyzed series needed less than 822 DD to complete the 50% of the emergence. Also, emergency occurred earlier in the hottest regions, while it was delayed in more temperate areas. Beyond the possible variability between local populations, the difference in the heat accumulation during the fall season may have affected the degree of maturation of overwintering larvae, and subsequently, the temporal pattern of M. galloprovincialis emergences. Therefore these results suggest the need to differentiate local management strategies for the PWN vector, depending on the location, and the climatic variables of each region. Finally, protandrous emergence patterns were observed for M. galloprovincialis in most of the studied data-sets. Regarding the flight phenology of M. galloprovincialis, a total of 8 trapping experiments were carried out in different regions of the Iberian Peninsula (Castellón, Teruel, Segovia and Alicante) between 2010 and 2015. The use of commercial lures and traps allowed monitoring of the flight period of M. galloprovincialis. The analyses of such curves, helped confirming different aspects. First, a decline in the number of catches and a shortening of the flight period was observed as the altitude increased. Flight period was recorded to start in May / June when the daily average temperature went over 14 ° C. A significant influence of high temperatures on the decrease of catches in the summer was found in many occasions, which frequently lead to a bimodal profile of the flight curves in warm areas. The evolution of sex ratio along the flight period shows a greater capture of females at the beginning of the period, and of males at the end. In addition, the circadian response of M. galloprovincialis to lured traps was described for the first time, concluding that the insect is diurnal and that such response is linked to high temperatures. Two networks of systematic sampling of saproxylic insects were installed in the Region of Valencia (Red MUFFET, 15 plots, 2013) and Murcia (Red ICPF, 20 plots, 2008-2010). These networks, intended to serve the double purpose of early-detection and long term monitoring of the saproxylic beetle assemblies, allowed the study of insect communities related to M. galloprovincialis. Each of the plots had a trap baited with attractants and a weather station. The registration of almost 300 species of saproxylic beetles demonstrated the potential use of such trapping networks for the early detection of exotic organisms, while at the same time allows the characterization and evaluation of useful entomological fauna communities, representing one of the best tools for the integrated pest management. In this particular case, the studied community of saproxylic beetles was very homogeneous with respect to environmental variation of the sampling areas, and despite small variations between communities of different ecosystems, the role that M. galloprovincialis apparently plays in them across the studied gradient seems to be the same. However, the analysis through food-webs showed the ecological significance of M. galloprovincialis as a connector between different trophic levels. Finally, 12 mark-release-recapture experiments were carried out between 2009 and 2012 in Castellón, Teruel, Valencia and Murcia (Spain) with the aim to describe the dispersive behavior of M. galloprovincialis as well as the stand and landscape characteristics that could influence its abundance and dispersal. No insects younger than 8 days were caught in lured traps. Population abundance estimates from mark-release-recapture data, seemed related to forest continuity, naturalization, and to prior presence of forest fires. On the other hand, M. galloprovincialis dispersal was not found to be significantly influenced by the direction and intensity of prevailing winds. The abundance of host material, very related to stand characteristics and spacing indexes, influenced the insect abundance in fragmented landscapes. In addition, the location of the traps optimized the number of catches when they were placed in the edge of the forest stands and in visible positions. Finally it was also found that M. galloprovincialis is able to fly up to 1500 m / day, reaching maximum distances of up to 13600 m or 22100 m.