967 resultados para Seasonal time series


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iodine speciation analysis was carried out upon seawater samples collected in July 1993 at the DYFAMED station (43 °25?N, 7 °52?E) located in the northwestern Mediterranean Sea. Dissolved iodate and iodide were directly determined by differential pulse polarography and cathodic stripping square wave voltammetry, respectively, and organically bound iodine was estimated by wet-chemical oxidation with sodium hypochlorite. Iodate is the predominant species ranging from 416 nM in surface waters to 480 nM in bottom waters. Iodide is present in significant concentrations up to 60 nM in surface waters, undetectable between 500 and 1000 m depth and present in very low but measurable concentrations (about 6 nM) in deep waters. The vertical profile of total free iodine demonstrates observable removal from surface waters, slight enrichment at about 200 m depth and constant there below. Up to 40 nM of organically bound iodine has been estimated between 20 to 30 m. Factorial analysis of different iodine species with biologically relevant parameters provided strong evidence for iodine biophilic features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition and vertical distribution of planktonic ciliates within the surface layer was monitored over four diel cycles in May 95, during the JGOFS-France DYNAPROC cruise in the Ligurian Sea (NW Mediterranean). Ciliates were placed into size and trophic categories: micro- and nano-heterotrophic ciliates, mixotrophic ciliates, tintinnids and the autotrophic Mesodinium rubrum. Mixotrophic ciliates (micro and nano) represented an average of 46% of oligotrich abundance and 39% of oligotrich biomass; nano-ciliates (hetero and mixotrophic) were abundant, representing about 60 and 17% of oligotrich abundance and biomass, respectively. Tintinnid ciliates were a minor part of heterotrophic ciliates. The estimated contribution of mixotrophs to chlorophyll a concentration was modest, never exceeding 9% in discrete samples. Vertical profiles of ciliates showed that chlorophyll-containing ciliates (mixotrophs and autotrophs) were mainly concentrated and remained at the chlorophyll a maximum depth. In contrast, among heterotrophic ciliates, a portion of the population appeared to migrate from 20-30 m depth during the day to the surface at night or in the early morning. Correlation analyses of ciliate groups and phytoplankton pigments showed a strong relationship between nano-ciliates and zeaxanthin, and between chlorophyll-containing ciliates and chlorophyll a, as well as other pigments that were maximal at the chlorophyll a maximum depth. Total surface layer concentrations showed minima of ciliates during nightime/early morning hours.