989 resultados para Science Studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual-beam transient thermal lens studies were carried out in aqueous solutions of rhodamine 6G using 532 nm pulses from a frequency-doubled Nd:YAG laser. The analysis of the observed data showed that the thermal lens method can effectively be utilized to study the nonlinear absorption and aggregation which are taking place in a dye medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cochin University of Science & Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of various phthalocyanine (Pc) molecules in PVA matrix have been reported for the first time. The recorded spectra are analyzed to get the important spectral parameters, such as optical absorption cross-section (σa), emission cross-section (σe), oscillator strength (f), fluorescence bandwidth (Δλ), emission wavelength (λ), radiative decay time (τ) and optical gain (G). Analysis shows that the emission cross-section and optical gain are maximum in the NdHPc2-doped PVA matrix. However, a comparison of the calculated emission parameters with that of borate glass matrix show that they are many times smaller in the present matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss an open photoacoustic cell study on sulfer-doped n-type InP wafer. The thermal diffusivity of the sample is evaluated from the phase data associated with the photoacoustic signal as a function of the modulation frequency under heat transmission configuration. Analysis is made on the basis of the Rosencwaig-Gersho theory and the results are compared with those from earlier reported photoacoustic studies of semiconductors. Our investigation clearly indicates that the instantaneous thermalization process is the major heat diffusion mechanism responsible for the photoacoustic signal generation in an InP sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser induced transverse photothermal deflection technique has been employed to determine the thermal parameters of InP doped with Sn, S and Fe as well as intrinsic InP. The thermal diffusivity values of these various samples are evaluated from the slope of the curve plotted between the phase of photothermal deflection signal and pump-probe offset. Analysis of the data shows that heat transport and hence the thermal diffusivity value, is greatly affected by the introduction of dopant. It is also seen that the direction of heat flow with respect to the plane of cleavage of semiconductor wafers influences the thermal diffusivity value. The results are explained in terms of dominating phonon assisted heat transfer mechanism in semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science & Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-destructive testing d multilayer dielectric coatings (SiO2/TiO2 structure) has been carried out using the photoacoustic technique. This technique makes use d a 10 mW He-Ne laser, a photoacoustic cell and a lock-in amplifier. The chopped He-Ne laser beam is allowed to fall on the sample placed in a photoacoustic cell. The acoustic signals thus generated are detected using a microphone and the resulting output is processed by a lock-in amplifier. The amplitude and phase of the signals were measured as a function of the chopping frequency. Striking step-like variations are observed in me phase against frequency plot which dearly reveals the different layers present in the multilayer structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoemission optogalvanaic (POG) effect has been observed by irradiating copper target electrode, in a nitrogen discharge cell using 1.06 μm and frequency doubled 532 nm Nd:YAG laser pulse. Measurement of the nature of the variation of POG signal strength with 532 nm laser fluence confirms the two photon induced photoelectric emission from copper. However, using 1.06 μm laser pulses thermally assisted photoemission is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Third order nonlinear susceptibility χ(3) and second hyperpolarizability (γ) of a bis-naphthalocyanine viz. europium naphthalocyanines, Eu(Nc)2, were measured in dimethyl formamide solution using degenerate four wave mixing at 532 nm under nanosecond pulse excitation. Effective nonlinear absorption coefficient, βeff and imaginary part of nonlinear susceptibility, Im(χ(3)) were obtained using open aperture /Z-scan technique at the same wavelength. Optical limiting property of the sample was also investigated. The role of excited state absorption in deciding the nonlinear properties of this material is discussed.