930 resultados para SIDE-CHAIN POLYMERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper-zinc heterometallic 1D chain coordination polymer has been synthesized and characterized by elemental analysis, and IR spectra etc. The crystal structure was determined by single-crystal X-ray diffraction analyses. The title complex is 1 D chain coordination polymer with the chemical formula {[CuLZn center dot CuLZn(H2O)]center dot H2O}(n), where H4L=N-(2-hydroxybenzamido)-N'-(3-carboxylsalicylidene)ethylenediamine. Its structural unit is comprosed of two tetranuclear cycles formed by two dissymmetrical tetranuclear units. These units polymerized each other to form 1 D chain coordination polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The size-armed polystyrenes and poly-(methyl methacrylate)s with a triphenylene core showed different self-assembling patterns, isolated cylinders for polySt on mico and highly ordered cylindrical pores for polyMMA on a silicon water. With a decrease of polymer concentration in tetrahydrofuran (HHF), the size and height of cylinders decreased for polySt, but fur polyMMA, the size and depth of the cylindrical pores increased. Slow evaporation of the solvent and a low molecular weight favored the formation of regular patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy ((ε) over bar (AB)) between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/ homopolymer blends. Furthermore, the investigation of the average end-to-end distance ((h) over bar) in different systems indicates that the copolymer chains tend to coil with the decrease Of (ε) over bar (AB) whereas the (h) over bar of the homopolymer chains depends on the chain structure of the copolymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A main-chain nonracemic chiral liquid crystalline polymer was synthesized from (R)-(-)4'-{w-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1-decyloxyl-4-biphenylcarboxylic acid. This polymer contained 10 methylene units in each chemical repeating unit and was abbreviated PET(R*-10). On the basis of differential scanning calorimetry, wide-angle X-ray diffraction, and polarized light microscopy experiments, chiral smectic C (S-C*) and chiral smectic A (S-A*) phases were identified. Both flat-elongated and helical lamellar crystal morphologies were observed in transmission electron microscopy. Of particular interest was the flat-elongated lamellar crystals were constructed via microtwinning of an orthorhombic cell with dimensions of a = 1.42 nm, b = 1.28 nm, and c = 3.04 nm. On the other hand, the helical lamellar crystals were exclusively left-handed, which was opposite to the right-handed helical crystals grown in PET(R*-9) and PET(R*-11) (having 9 and 11 methylene units, respectively). Note that these three polymers had identical right-handed chiral centers (R*-). Therefore, a single methylene unit difference on the polymer backbones on an atomic length scale substantially changed the chirality of the crystals in the micrometer length scale. Furthermore, aggregates of these helical crystals in PET(R*-10) did not generate banded spherulites in polarized light microscopy. Possible reasons for this change and loss of helical senses (handedness) on different length scales in chirality transferring processes were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new compounds, [CoL2(H2O)(2)](NO3)(2). 8H(2)O (1) and [CoL(H2O)(2)(CH3CO2)(2)]. H2O (2), were obtained from self-assembly of the corresponding metal salts with 1,1'-(1,4-butanediyl)bis(benzimidazole) (L). In 1, each cobalt ion is coordinated to four nitrogen atoms from four molecules of L, and to two water molecules. Metal ions are bridged by L ligands to form infinite (4, 4) networks that contain 44-membered rings. The (4, 4) networks of 1 stack in a parallel fashion, resulting in the formation of large channels in the material. In 2, each cobalt ion is coordinated to two N atoms from two L molecules, two water molecules and two carboxylate O atoms from two acetate anions. Each L molecule is coordinated to two cobalt ions, acting as a bridging ligand as in 1. The bridged cobalt ions form an infinite zigzag chain structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full Paper: Two new 1,1'-binaphthyl-2,2'-diyl-based dianhydrides, i.e., 2,2'-bis(3,4-dicarboxybenzamido)-1,1'-binaphthyl dianhydride (BNDADA) and 2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride (BNDEDA), were synthesized and polymerized with various aromatic diamines to afford polyimides through the traditional two-step method. The polyimides with inherent viscosities ranging from 0.27 to 0.70 dl . g(-1) showed excellent solubilities in polar solvents such as DMAc, DMSO and NMP etc., except of the poly(ester imide) prepared from BNDEDA and benzidine. Poly(ester imide)s based on BNDEDA can also be readily dissolved in weakly polar solvents such as THF, CH2Cl2 and CHCl3. The glass transition temperatures of these polyimides are in the range of 210-310 degrees C; the 5% weight loss temperatures are in the range of 390-465 degrees C in nitrogen and 384-447 degrees c in air. These polymers from light yellow, tough films that were transparent above 365 nm. The effects of different flexible units attached in the 2- and 2'-positions, i.e., amide, ester and ether, on the properties of the polyimides obtained are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shear-induced spiral-like morphology of a main-chain thermotropic liquid crystalline poly(aryl ether ketone) is observed and characterized by means of polarizing light microscopy, atomic force microscopy, transmission electron microscopy and electron diffraction techniques. The spiral-like texture is formed during shearing in the temperature range of liquid crystalline to isotropic transition (335-340 degreesC), and dispersed discontinuously in the mosaic matrix. Electron diffraction results indicate that the spiral exhibits orthorhombic lateral packing of the crystals and homeotropic alignment of the molecules. The spiral formation process and possible affecting factors are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of main-chain Liquid-crystalline ionomers containing sulfonate groups pendant on the polymer backbone were synthesized by an interfacial condensation reaction of 4,4'-dihydroxy-alpha,alpha'-dimethyl benzalazine, a mesogenic monomer, with brilliant yellow (BY), a sulfonate-containing monomer, and a 1/9 mixture of terephthaloyl and sebacoyl dichloride. The structures of the polymers were characterized by LR and UV spectroscopies. DSC and thermogravimetric analysis were used to measure the thermal properties of those polymers, and the mesogenic properties were characterized by a polarized optical microscope, DSC, and wide-angle X-ray diffraction. The ionomers were thermally stable to about 310 degreesC. They were thermotropic liquid-crystalline polymers (LCPs) with high mesomorphic-phase transition temperatures and exhibited broad nematic mesogenic regions of 160-170 degreesC, and they were lyotropic LCPs with willowy leaf-shaped textures in sulfuric acid. However, the thermotropic liquid-crystalline properties were somewhat weakened because the concentration of BY was more than 8%. The inherent viscosity in N-methyl-2-pyrrolidone suggested that intramolecular associations of sulfonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallocene-catalyzed short chain branched polyethylene single crystals, formed from the melt at a higher crystallization temperature of 114 degreesC, were obtained. Highly elongated lamellae were formed, which are different from truncated lozenge or lenticular shaped single crystals formed at a lower crystallization temperature. It was found that there existed a definite line in the lamellae along the longitudinal growth direction and two regions were separated by the definite line. The lateral habits of both the regions were asymmetrical about the b-axis due to the chain tilting, which was the same as that at a lower crystallization temperature. Generally, the highly elongated lamellae were not straight, but curved towards the opposite direction with chain tilting direction due to a series of edge dislocation within a lamella. The inner side of a lamella was serrated and the outer side was smooth due to the lamellar curvature. The thickness of both regions of a lamella was different, the broader region was thicker than the narrower region, which was different from the uniform thickness of the lamellae formed at a lower crystallization temperature. The different thicknesses within a lamella were considered as the result of the initial thickness difference and the impact of isothermal thickening. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials. [S0163-1829(99)01042-5].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research carried out at the Chinese Institute of Applied Chemistry has contributed significantly to the understanding of the radiation chemistry of polymers. High energy radiation has been successfully used to cross-link fluoropolymers and polyimides. Here chain flexibility has been shown to play an important role, and T-type structures were found to exist in the cross-linked fluoropolymers. A modified Charlesby-Pinner equation, based upon the importance of chain flexibility, was developed to account for the sol-radiation dose relationship in systems of this type. An XPS method has been developed to measure the cross-linking yields in aromatic polymers and fluoropolymers, based upon the dose dependence of the aromatic shake-up peaks and the F/C ratios, respectively. Methods for radiation cross-linking degrading polymers in polymer blends have also been developed, as have methods for improving the radiation resistance of polymers through radiation cross-linking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four novel polymeric lanthanide(III) complexes of two new double betaine derivatives have been synthesized and structurally determined. In [{La-2(L-1)(2)(H2O)(9)}(n)]Cl-6n. 2nH(2)O (1) and [{Tb(L-1)(H2O)(4)}(n)]Cl-3n. nH(2)O (2) (L-1 =4,4'-trimethylenedipyridinio-N,N'-diacetate), the lanthanide(III) ions form a two-dimensional layer in which each pair of lanthanide(III) ions is bridged by two syn-anti mu-carboxylato-O,O' groups. Adjacent layers are cross-linked through hydrogen bonds among aqua ligands, lattice water molecules and chloride ions, to form a three-dimensional network. Isomorphous [{Ln(L-1)(H2O)(4)}(n)]Cl-3n. 5nH(2)O (Ln=La, 3; Ln=Tb, 4; L-2=1,3 bis(pyridinio-4-carboxylato)-propane) each contain a centrosymmetric paddle-wheel-like dimeric unit in which each pair of adjacent metal atoms is bridged by four syn-syn mu-carboxylato-O,O' groups that are oriented nearly perpendicular to each other about the metal-metal axis. Neighboring dimeric subunits are bridged by a pair of flexible LL ligands into a polymeric chain. Adjacent chains are inter-linked by hydrogen bonds among aqua ligands, lattice water molecules and chloride ions into a three-dimensional network. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to develop photosensitive polyimides (PSPIs) imaged in alkaline aqueous solution, a photosensitive diamine and relevant polymer containing conjugated double bonds in the main chain have been synthesized. The photosensitive characteristics and thermal stability of the polymers were investigated. These polymers possess good thermal stability and sensitivity to UV irradiation, and could be used to form a PSPI resist using alkaline aqueous solution as developer. (C) 1999 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent spectral hole burning spectroscopy is applied to evaluate the low-temperature relaxation around the dye molecules doped in several types of polymers. The doped dye is tetraphenylporphine, and the measured polymers are vinyl polymers and main chain aromatic polymers. The changes of microscopic environments around the dye are evaluated from the changes in the hole profiles during temperature cycling experiments. The relaxation behavior of the polymers is discussed in relation to their chemical structures. (C) 1999 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new monomer, sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate) (1), was synthesized by sulfonation of 4,4'-difluorobenzophenone (2) with fuming sulfuric acid. Poly(ether ether ketone)s containing sodium sulfonate groups were synthesized directly via aromatic nucleophilic substitution from the sodium sulfonate-functionalized monomer 1 and Bisphenol A (3) in the presence of potassium carbonate in dimethyl sulfoxide. The polycondensation proceeds without any side reactions. The differential scanning calorimetry measurement indicated that the polymers are amorphous and the glass transition temperatures increase with the content of sodium sulfonate groups in the polymer chain. The degree of substitution with sodium sulfonate groups has strong influence on their thermal stability and solubility.