947 resultados para SAMPLING
Resumo:
We propose distributed algorithms for sampling networks based on a new class of random walks that we call Centrifugal Random Walks (CRW). A CRW is a random walk that starts at a source and always moves away from it. We propose CRW algorithms for connected networks with arbitrary probability distributions, and for grids and networks with regular concentric connectivity with distance based distributions. All CRW sampling algorithms select a node with the exact probability distribution, do not need warm-up, and end in a number of hops bounded by the network diameter.
Resumo:
Sampling a network with a given probability distribution has been identified as a useful operation. In this paper we propose distributed algorithms for sampling networks, so that nodes are selected by a special node, called the source, with a given probability distribution. All these algorithms are based on a new class of random walks, that we call Random Centrifugal Walks (RCW). A RCW is a random walk that starts at the source and always moves away from it. Firstly, an algorithm to sample any connected network using RCW is proposed. The algorithm assumes that each node has a weight, so that the sampling process must select a node with a probability proportional to its weight. This algorithm requires a preprocessing phase before the sampling of nodes. In particular, a minimum diameter spanning tree (MDST) is created in the network, and then nodes weights are efficiently aggregated using the tree. The good news are that the preprocessing is done only once, regardless of the number of sources and the number of samples taken from the network. After that, every sample is done with a RCW whose length is bounded by the network diameter. Secondly, RCW algorithms that do not require preprocessing are proposed for grids and networks with regular concentric connectivity, for the case when the probability of selecting a node is a function of its distance to the source. The key features of the RCW algorithms (unlike previous Markovian approaches) are that (1) they do not need to warm-up (stabilize), (2) the sampling always finishes in a number of hops bounded by the network diameter, and (3) it selects a node with the exact probability distribution.
Resumo:
Sequential estimation of the success probability $p$ in inverse binomial sampling is considered in this paper. For any estimator $\hatvap$, its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters $a$ and $b$ for $\hatvap < p$ and $\hatvap > p$ respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as $p \rightarrow 0$, and which guarantee that, for any $p \in (0,1)$, the risk is lower than its asymptotic value. This allows selecting the required number of successes, $\nnum$, to meet a prescribed quality irrespective of the unknown $p$. In addition, the proposed estimators are shown to be approximately minimax when $a/b$ does not deviate too much from $1$, and asymptotically minimax as $\nnum \rightarrow \infty$ when $a=b$.
Resumo:
The Nakagami-m distribution is widely used for the simulation of fading channels in wireless communications. A novel, simple and extremely efficient acceptance-rejection algorithm is introduced for the generation of independent Nakagami-m random variables. The proposed method uses another Nakagami density with a half-integer value of the fading parameter, mp ¼ n/2 ≤ m, as proposal function, from which samples can be drawn exactly and easily. This novel rejection technique is able to work with arbitrary values of m ≥ 1, average path energy, V, and provides a higher acceptance rate than all currently available methods. RESUMEN. Método extremadamente eficiente para generar variables aleatorias de Nakagami (utilizadas para modelar el desvanecimiento en canales de comunicaciones móviles) basado en "rejection sampling".
Resumo:
Many practical simulation tasks demand procedures to draw samples efficiently from multivariate truncated Gaussian distributions. In this work, we introduce a novel rejection approach, based on the Box-Muller transformation, to generate samples from a truncated bivariate Gaussian density with an arbitrary support. Furthermore, for an important class of support regions the new method allows us to achieve exact sampling, thus becoming the most efficient approach possible. RESUMEN. Método específico para generar muestras de manera eficiente de Gaussianas bidimensionales truncadas con cualquier zona de truncamiento basado en la transformación de Box-Muller.
Resumo:
Monte Carlo techniques, which require the generation of samples from some target density, are often the only alternative for performing Bayesian inference. Two classic sampling techniques to draw independent samples are the ratio of uniforms (RoU) and rejection sampling (RS). An efficient sampling algorithm is proposed combining the RoU and polar RS (i.e. RS inside a sector of a circle using polar coordinates). Its efficiency is shown in drawing samples from truncated Cauchy and Gaussian random variables, which have many important applications in signal processing and communications. RESUMEN. Método eficiente para generar algunas variables aleatorias de uso común en procesado de señal y comunicaciones (por ejemplo, Gaussianas o Cauchy truncadas) mediante la combinación de dos técnicas: "ratio of uniforms" y "rejection sampling".
Resumo:
The dimensionality effect is avoided by the use of sufficient statistics in event probability estimators realised by importance sampling. If the system function is not a sufficient statistic, an approach is proposed to reduce the dimensionality effect in the estimators. Simulation results of false-alarm probability estimations, applied to radar detection, confirm a clear concordance with the theoretical results
Resumo:
In this paper a new class of Kramer kernels is introduced, motivated by the resolvent of a symmetric operator with compact resolvent. The article gives a necessary and sufficient condition to ensure that the associ- ated sampling formula can be expressed as a Lagrange-type interpolation series. Finally, an illustrative example, taken from the Hamburger moment problem theory, is included.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. Besides, it has been the cornerstone for a significant mathematical literature on the topic of sampling theorems associated with differential and difference problems. In this work we provide, in an unified way, new and old generalizations of this result corresponding to various different settings; all these generalizations are illustrated with examples. All the different situations along the paper share a basic approach: the functions to be sampled are obtaining by duality in a separable Hilbert space H through an H -valued kernel K defined on an appropriate domain.
Resumo:
This paper concerns the characterization as frames of some sequences in U-invariant spaces of a separable Hilbert space H where U denotes an unitary operator defined on H ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces in L2 (R), where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In so doing, we need that the unitary operator U belongs to a continuous group of unitary operators.
Resumo:
In this work we carry out some results in sampling theory for U-invariant subspaces of a separable Hilbert space H, also called atomic subspaces. These spaces are a generalization of the well-known shift- invariant subspaces in L2 (R); here the space L2 (R) is replaced by H, and the shift operator by U. Having as data the samples of some related operators, we derive frame expansions allowing the recovery of the elements in Aa. Moreover, we include a frame perturbation-type result whenever the samples are affected with a jitter error.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulation chamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
Having reliable wireless communication in a network of mobile robots is an ongoing challenge, especially when the mobile robots are given tasks in hostile or harmful environments such as radiation environments in scientific facilities, tunnels with large metallic components and complicated geometries as found at CERN. In this paper, we propose a decentralised method for improving the wireless network throughput by optimizing the wireless relay robot position to receive the best wireless signal strength using implicit spatial diversity concepts and gradient-search algorithms. We experimentally demonstrate the effectiveness of the proposed solutions with a KUKA Youbot omni-directional mobile robot. The performance of the algorithms is compared under various scenarios in an underground scientific facility at CERN.
Resumo:
Adaptive Rejection Metropolis Sampling (ARMS) is a wellknown MCMC scheme for generating samples from onedimensional target distributions. ARMS is widely used within Gibbs sampling, where automatic and fast samplers are often needed to draw from univariate full-conditional densities. In this work, we propose an alternative adaptive algorithm (IA2RMS) that overcomes the main drawback of ARMS (an uncomplete adaptation of the proposal in some cases), speeding up the convergence of the chain to the target. Numerical results show that IA2RMS outperforms the standard ARMS, providing a correlation among samples close to zero.