956 resultados para Rays diffraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spray coating was used to produce thallium bromide samples on glass substrates. The influence of several fabrication parameters on the final structural properties of the samples was investigated. Substrate position, substrate temperature, solution concentration, carrying gas, and solution flow were varied systematically, the physical deposition mechanism involved in each case being discussed. Total deposition time of about 3.5 h can lead to 62-mu m-thick films, comprising completely packed micrometer-sized crystalline grains. X-ray diffraction and scanning electron microscopy were used to characterize the samples. On the basis of the experimental data, the optimum fabrication conditions were identified. The technique offers an alternative method for fast, cheap fabrication of large-area devices for the detection of high-energy radiation, i.e., X-rays and gamma-rays, in medical imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three method can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ... , 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoglucanases are enzymes that hydrolyze cellulose and are important components of the cellulolytic complex. In contrast to other members of the complex, they cleave internal beta-1,4-glycosidic bonds in the cellulose polymer, allowing cellulose to be used as an energy source. Since biomass is an important renewable source of energy, the structural and functional characterization of these enzymes is of interest. In this study, endoglucanase III from Trichoderma harzianum was produced in Pichia pastoris and purified. Crystals belonging to the orthorhombic space group P212121, with unit-cell parameters a = 47.54, b = 55.57, c = 157.3 angstrom, were obtained by the sitting-drop vapour-diffusion method and an X-ray diffraction data set was collected to 2.07 angstrom resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10(15) to 3 x 10(20) eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data are available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 x 10(19) eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the classification of 110 copper ore samples from Sossego Mine, based on X-ray diffraction and cluster analysis. The comparison based on the position and the intensity of the diffracted peaks allowed the distinction of seven ore types, whose differences refer to the proportion of major minerals: quartz, feldspar, actinolite, iron oxides, mica and chlorite. There was a strong correlation between the grouping and the location of the samples in Sequeirinho and Sossego orebodies. This relationship is due to different types and intensities of hydrothermal alteration prevailing in each body, which reflect the mineralogical composition and thus the X-ray diffractograms of samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory-LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy spectrum of cosmic rays between 10(16) eV and 10(18) eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2 . 10(16) eV and a significant steepening at approximate to 8 . 10(16) eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 degrees C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.