953 resultados para Ratio CD4:CD8
Resumo:
A design methodology to optimise the ratio of maximum oscillation frequency to cutoff frequency, f(MAX)/f(T), in 60 nm FinFETs is presented. Results show that 25 to 60% improvement in f(MAX)/f(T) at drain currents of 20-300 mu A/mu m can be achieved in a non-overlap gate-source/drain architecture. The reported work provides new insights into the design and optimisation of nanoscale FinFETs for RF applications.
Resumo:
Derivative spectroscopy has been utilised for the determination of amphotericin in various biological matrices including plasma, serum, urine and brain tissue. Whilst these methods have all been shown to be suitable for the determination of the drug in these matrices it has been reported that the application fails in the case of highly icteric plasma, this being due to the presence of high concentrations (>50 mu M) of bilirubin. This paper details the application of ratio spectra derivative spectroscopy to overcome the interference of bilirubin with amphotericin in such situations.
Resumo:
Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas.
Methods: Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities.
Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.
Resumo:
Lung T lymphocytes are important in pulmonary immunity and inflammation. it has been difficult to study these cells due to contamination with other cell types, mainly alveolar macrophages. We have developed a novel method for isolating lung T cells from lung resection tissue, using a combination of approaches. Firstly the lung tissue was finely chopped and filtered through a nylon mesh. Lymphocytic cells were enriched by Percoll density centrifugation and the T cells purified using human CD3 microbeads, resulting in 90.5% +/- 1.9% (n = 11) pure lymphocytes. The T cell yield from the crude cell preparation was 10.8 +/- 2.1% and viability, calculated using propidium iodide (PI) staining and trypan blue, was typically over 95%. The purification process did not affect expression of CD69 or CD103, nor was there a difference in the proportion of CD4 and CD8 cells between the starting population and the purified cells. Microarray analysis and real time RT-PCR revealed upregulation of GAPDH and CXCR6 of the lung T cells as compared to blood-derived T cells. This technique highly enriches lung T cells to allow detailed investigation of the biology of these cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The molecular recognition and attachment of the CD4 molecule and the HIV envelope glycoprotein (gp120) might be described as a consecutive three-step molecular recognition process. 1. (a) Long range interaction: electrostatic pre-orientation, 2. (b) short range interaction: electronic attachment followed by a ‘Locking-in’ (via aromatic ring orientation) and 3. (c) internal interaction (induced fit): conformational readjustment of the protein molecules. On the basis of the preliminary investigations (X-ray structures of CD4 and biological studies of CD4 and gp120 point mutants) we described a computational model. This approach consists of empirical calculations as well as ab initio level of quantum chemistry. The conformational analysis of the wild type and mutant CD4 molecules was supported by molecular mechanics and dynamics (Amber force field). The latter analysis involves the application of a novel method, the Amino Acid Conformation Assignment of Proteins (ACAP) software, developed for the notation of secondary protein structures. According to the cardinal role of the electrostatic factors during this interaction, several ab initio investigations were performed for better understanding of the recognition process on submolecular level. Using the above mentioned computational model, we could interpret the basic behaviours and predict some additional features of CD4-gp120 interaction, in spite of the missing gp120 X-ray structure.
Resumo:
We have previously shown that mice lacking the IL-12-specific receptor subunit ß2 (IL-12Rß2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rß2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rß2-/- mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rß2-deficient mice to autoimmune diseases. T cells from IL-12Rß2-/- mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25+CD4+ regulatory T cells (Tregs) in the thymus and spleen of IL-12Rß2-/- mice were comparable to those of WT mice. However, IL-12Rß2-/- mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-ß, as shown by significantly lower numbers of CD25+CD4+ T cells that expressed Foxp3. Functionally, CD25+CD4+ Tregs derived from IL-12Rß2-/- mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rß2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rß2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway. Copyright © 2008 by The American Association of Immunologists, Inc.
Resumo:
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.