897 resultados para REGENERATIVE NICHE
Resumo:
Uudistumiskyky ja innovaatiokyvykkyys edistävät uusien innovaatioiden syntymistä, mikä mahdollistaa kestävän kilpailuedun saavuttamisen. Tässä tutkimuksessa käsitellään uudistumiskykyä yhtenä merkittävänä innovaatiokyvykkyyden taustatekijänä. Pk-yritysten innovaatiokyvykkyyden mittaamisen on havaittu parantavan innovaatiokyvykkyyttä. Näin myös pk-yritysten uudistumiskyvyn sekä innovaatiokyvykkyyden mittaamisen merkitys korostuu kilpailun koventuessa markkinoilla ja sitä tulisi käyttää osana suorituskyvyn johtamista. Tutkimuksen tavoitteena oli selvittää, miten uudistumiskykyä ja innovaatiokyvykkyyttä mitataan pk-yrityksissä. Tutkimusongelmaa lähdettiin ratkaisemaan aihealueen teorian pohjalta, jota myöhemmin sovellettiin empiriaosuudessa. Empiriassa käytettiin kvalitatiivista tutkimusmenetelmää, missä haettiin vastauksia tutkimuskysymyksiin puolistrukturoidun haastattelumallin avulla. Tutkimuksen tuloksena selvisi, mihin innovaatiokyvykkyyden osa-alueisiin pk-yritykset keskittyvät mittaamisessa. Esimerkiksi pk-yritysten innovaatiokyvykkyyden mittaamisessa tulisi kiinnittää enemmän huomiota erityisesti osallistuvan johtamisen sekä ulkopuolisen tiedon merkitykseen. Kaiken kaikkiaan innovaatiokyvykkyyden mittaamisen merkitystä ja mittariston rakentamista tulisi opettaa pk-yrityksille laajemmin.
Resumo:
Peripheral axonal regeneration was investigated in adult male mice of the C57BL/6J (C), BALB/cJ (B) and A/J (A) strains and in their F1 descendants using a predegenerated nerve transplantation model. Four types of transplants were performed: 1) isotransplants between animals of the C, B and A strains; 2) donors of the C strain and recipients of the C x B and C x A breeding; 3) donors of the B strain and recipients of the C x B breeding, and 4) donors of the A strain and recipients of the C x A breeding. Donors had the left sciatic nerve transected and two weeks later a segment of the distal stump was transplanted into the recipient. Four weeks after transplantation the regenerated nerves were used to determine the total number of regenerated myelinated fibers (TMF), diameter of myelinated fibers (FD) and myelin thickness (MT). The highest TMF values were obtained in the groups where C57BL/6J mice were the donors (C to F1 (C x B) = 4658 ± 304; C to F1 (C x A) = 3899 ± 198). Also, A/J grafts led to a significantly higher TMF (A to F1 (C x A) = 3933 ± 565). Additionally, isotransplant experiments showed that when the nerve is previously degenerated, C57BL/6J mice display the largest number of myelinated fibers (C to C = 3136 ± 287; B to B = 2759 ± 170, and A to A = 2835 ± 239). We also observed that when C57BL/6J was the graft donor, FD was the highest and MT did not differ significantly when compared with the other groups. These morphometric results reinforce the idea that Schwann cells and the nerve environment of C57BL/6J provide enough support to the regenerative process. In this respect, the present results support the hypothesis that the non-neuronal cells, mainly Schwann cells, present in the sciatic nerve of C57BL/6J mice are not the main limiting factor responsible for low axonal regeneration.
Resumo:
Duchenne muscular dystrophy is one of the most devastating myopathies. Muscle fibers undergo necrosis and lose their ability to regenerate, and this may be related to increased interstitial fibrosis or the exhaustion of satellite cells. In this study, we used mdx mice, an animal model of Duchenne muscular dystrophy, to assess whether muscle fibers lose their ability to regenerate after repeated cycles of degeneration-regeneration and to establish the role of interstitial fibrosis or exhaustion of satellite cells in this process. Repeated degenerative-regenerative cycles were induced by the injection of bupivacaine (33 mg/kg), a myotoxic agent. Bupivacaine was injected weekly into the right tibialis anterior muscle of male, 8-week-old mdx (N = 20) and C57Bl/10 (control, N = 10) mice for 20 and 50 weeks. Three weeks after the last injection, the mice were killed and the proportion of regenerated fibers was counted and reported as a fibrosis index. Twenty weekly bupivacaine injections did not change the ability of mdx muscle to regenerate. However, after 50 weekly bupivacaine injections, there was a significant decrease in the regenerative response. There was no correlation between the inability to regenerate and the increase in interstitial fibrosis. These results show that after prolonged repeated cycles of degeneration-regeneration, mdx muscle loses its ability to regenerate because of the exhaustion of satellite cells, rather than because of an increase in interstitial fibrosis. This finding may be relevant to cell and gene therapy in the treatment of Duchenne muscular dystrophy.
Resumo:
Tämä työ tutkii ja tarkastelee transitio-kokeilua ravinnetaloudessa. Transitio-kokeilu on toimintatutkimusprojekti, joka toteutetaan systeemisen muutoksen ajattelun mukaisesti alhaalta ylöspäin. Ravinnetalous määritetään tarkemmin työn kautta sekä analysoidaan monitaso-perspektiivin näkökulmasta. Ravinnetalous on terminä varsin tuntematon ja tarvitsee enemmän tunnettavuutta laajemman yleisön edessä. Transitio-areenan ja transitio-visioiden kehittäminen ovat työn keskipisteessä, koska ne ovat tärkeimpiä vaiheita transition alkuvaiheessa. Joukko sidosryhmätoimijoita osallistuu transitio areenaan sekä visioiden jatkokehittelyyn. Visio(t) luodaan ensisijaisesti backcasting-menetelmällä, jota myös täydennetään tavanomaisella ennustamisella. Backcasting- menetelmä on osin osallistava ja siinä käytetään ravinteiden planeettarajoja kvantitatiivisina pääperiaatteina, minkä tuloksena myös visiot ovat osin kvantitatiivisia. Transitio areenan kokoaminen ja fasilitointi aiheuttavat hankalia kysymyksiä, jotka tarvitsevat jatko-tutkimusta. Alhaalta-ylöspäin organisoitu transitio-arena houkuttelee niche-toimijoita, mutta epäonnistuu sitouttamaan julkisen vallan toimijoita. Toimintamallin voimasuhteet, politiikka ja transition vakiinnuttaminen tulisivat olla jatko-toimenpiteinä niin tutkimuksessa kuin toiminnassakin.
Resumo:
Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA), on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g) maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip) for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA) muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001) and CsA significantly reduced the body weight gain (15.5%; P = 0.01) during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05). CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001). Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.
Resumo:
Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.
Resumo:
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Resumo:
We investigated whether liver injury by dual exposure to ethanol and carbon tetrachloride (EtOH + CCl4) for 15 weeks would persist after hepatotoxic agents were removed (EtOH + CCl4/8wR). After 15 weeks of hepatic injury with ethanol (5.5%, m/v) and carbon tetrachloride (0.05, mL/kg, ip), 5 of 11 female Wistar rats were sacrificed. The other 6 rats were maintained for an additional 8 weeks without hepatotoxic agents. Ultrasonography showed increased liver echogenicity and dilation of portal vein caliber in both groups (EtOH + CCl4: 0.22 ± 0.01 cm, P < 0.001; EtOH + CCl4/8wR: 0.21 ± 0.02 cm, P < 0.01) vs control (0.16 ± 0.02 cm). Histopathology showed regenerative nodules in both experimental groups. Histomorphometry revealed increased fibrosis content in both groups (EtOH + CCl4: 12.6 ± 2.64%, P < 0.001; EtOH + CCl4/8wR: 10.4 ± 1.36%, P < 0.05) vs control (2.2 ± 1.21%). Collagen types I and III were increased in groups EtOH + CCl4 (collagen I: 2.5 ± 1.3%, P < 0.01; collagen III: 1.3 ± 0.2%, P < 0.05) and EtOH + CCl4/8wR (collagen I: 1.8 ± 0.06%, P < 0.05; collagen III: 1.5 ± 0.8%, P < 0.01) vs control (collagen I: 0.38 ± 0.11%; collagen III: 0.25 ± 0.06%). Tissue transglutaminase increased in both groups (EtOH + CCl4: 66.4 ± 8%, P < 0.01; EtOH + CCl4/8wR: 58.8 ± 21%, P < 0.01) vs control (7.9 ± 0.8%). Cirrhosis caused by the association of CCl4-EtOH remained for at least 8 weeks after removal of these hepatotoxic agents. Ultrasound images can be a useful tool to evaluate advanced hepatic alterations.
Resumo:
Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF). Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine) can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg) by intraperitoneal injections of thioacetamide (200 mg/kg). Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1) and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a) reduced the relative mRNA expression of the genes: Col-α1 (-53%), TIMP-1 (-31.7%), TGF-β1 (-57.7%), and MMP-2 (-41.6%), whereas Plau mRNA remained unchanged; b) reduced GGT (-43.1%), ALT (-17.6%), and AST (-12.2%) serum levels; c) increased liver weight (11.3%), and reduced liver collagen (-37.1%), regenerative nodules size (-22.1%), and fibrous septum thickness. Progranulin protein (immunohistochemistry) and mRNA (in situ hybridization) were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.
Resumo:
The atrioventricular (AV) node is permanently damaged in approximately 3% of congenital heart surgery operations, requiring implantation of a permanent pacemaker. Improvements in pacemaker design and in alternative treatment modalities require an effective in vivo model of complete heart block (CHB) before testing can be performed in humans. Such a model should enable accurate, reliable, and detectable induction of the surgical pathology. Through our laboratory’s efforts in developing a tissue engineering therapy for CHB, we describe here an improved in vivo model for inducing chronic AV block. The method employs a right thoracotomy in the adult rabbit, from which the right atrial appendage may be retracted to expose an access channel for the AV node. A novel injection device was designed, which both physically restricts needle depth and provides electrical information via electrocardiogram interface. This combination of features provides real-time guidance to the researcher for confirming contact with the AV node, and documents its ablation upon formalin injection. While all animals tested could be induced to acute AV block, those with ECG guidance were more likely to maintain chronic heart block >12 h. Our model enables the researcher to reproduce both CHB and the associated peripheral fibrosis that would be present in an open congenital heart surgery, and which would inevitably impact the design and utility of a tissue engineered AV node replacement.
Resumo:
Mesenchymal stem cells (MSC) are multipotential nonhematopoietic progenitor cells capable of differentiating into multiple mesenchymal tissues. MSC are able to reconstitute the functional human hematopoietic microenvironment and promote engraftment of hematopoietic stem cells. MSC constitutively express low levels of major histocompatibility complex-I molecules and do not express costimulatory molecules such as CD80, CD86 or CD40, thus lacking immunogenicity. Furthermore, they are able to suppress T- and B-lymphocyte activation and proliferation and may also affect dendritic cell maturation. Based on these properties, MSC are being used in regenerative medicine and also for the treatment of autoimmune diseases and graft-versus-host disease. On the other hand, MSC from patients diagnosed with myelodysplastic syndromes or multiple myeloma display abnormalities, which could play a role in the physiopathology of the disease. Finally, in patients with immune thrombocytopenic purpura, MSC have a reduced proliferative capacity and a lower inhibitory effect on T-cell proliferation compared with MSC from healthy donors.
Resumo:
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Resumo:
We investigated the reactivity and expression of basal lamina collagen by Schwann cells (SCs) cultivated on a supraorganized bovine-derived collagen substrate. SC cultures were obtained from sciatic nerves of neonatal Sprague-Dawley rats and seeded on 24-well culture plates containing collagen substrate. The homogeneity of the cultures was evaluated with an SC marker antibody (anti-S-100). After 1 week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, S-100 and p75NTR (pan neurotrophin receptor) and for scanning electron microscopy (SEM). Positive labeling with antibodies to the cited molecules was observed, indicating that the collagen substrate stimulates SC alignment and adhesion (collagen IV labeling - organized collagen substrate: 706.33 ± 370.86, non-organized collagen substrate: 744.00 ± 262.09; S-100 labeling - organized collagen: 3809.00 ± 120.28, non-organized collagen: 3026.00 ± 144.63, P < 0.05) and reactivity (p75NTR labeling - organized collagen: 2156.33 ± 561.78, non-organized collagen: 1424.00 ± 405.90, P < 0.05; means ± standard error of the mean in absorbance units). Cell alignment and adhesion to the substrate were confirmed by SEM analysis. The present results indicate that the collagen substrate with an aligned suprastructure, as seen by polarized light microscopy, provides an adequate scaffold for SCs, which in turn may increase the efficiency of the nerve regenerative process after in vivo repair.
Resumo:
After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.
Resumo:
Technological innovations and the advent of digitalization have led retail business into one of its biggest transformations of all time. Consumer behaviour has changed rapidly and the customers are ever more powerful, demanding, tech-savvy and moving on various plat-forms. These attributes will continue to drive the development and robustly restructure the architecture of value creation in the retail business. The largest retail category, grocery yet awaits for a real disruption, but the signals for major change are already on the horizon. The first wave of online grocery retail was introduced in the mid 1990’s and it throve until millennium. Many overreactions, heavy investments and the burst IT-bubble almost stag-nated the whole industry for a long period of time. The second wave started with a venge-ance around 2010. Some research was carried out during the first wave from a single-viewpoint of online grocery retail, but without a comprehensive approach to online-offline business model integration. Now the accelerating growth of e-business has initiated an increased interest to examine the transformation from traditional business models towards e-business models and their integration on the companies’ traditional business models. This research strove to examine how can we recognize and analyze how digitalization and online channels are affecting the business models of grocery retail, by using business mod-el canvas as an analysis tool. Furthermore business model innovation and omnichannel retail were presented and suggested as potential solutions for these changes. 21 experts in online grocery industry were being interviewed. The thoughts of the informants were being qualitatively analysed by using an analysis tool called the business model canvas. The aim of this research was to portray a holistic view on the Omnichannel grocery retail business model, and the value chain, in which the case company Arina along with its partners are operating. The key conclusions exhibited that online grocery retail business model is not an alterna-tive model nor a substitute for the traditional grocery retail business model, though all of the business model elements are to some extent affected by it, but rather a complementary business model that should be integrated into the prevailing, conventional grocery retail business model. A set of business model elements, such as value proposition and distribu-tion channels were recognized as the most important ones and sources of innovation within these components were being illustrated. Segments for online grocery retail were empiri-cally established as polarized niche markets in contrast of the segmented mass-market of the conventional grocery retail. Business model innovation was proven to be a considera-ble method and a conceptual framework, by which to come across with new value proposi-tions that create competitive advantage for the company in the contemporary, changing business environment. Arina as a retailer can be considered as a industry model innovator, since it has initiated an entire industry in its market area, where other players have later on embarked on, and in which the contributors of the value chain, such as Posti depend on it to a great extent. Consumer behaviour clearly affects and appears everywhere in the digi-talized grocery trade and it drives customers to multiple platforms where retailers need to be present. Omnichannel retail business model was suggested to be the solution, in which the new technologies are being utilized, contemporary consumer behaviour is embedded in decision-making and all of the segments and their value propositions are being served seamlessly across the channels.