953 resultados para Project 2001-006-B : Environmental Assessment Systems for Commercial Buildings LCADesign


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Buildings, which account for approximately half of all annual energy and greenhouse gas emissions, are an important target area for any strategy addressing climate change. Whilst new commercial buildings increasingly address sustainability considerations, incorporating green technology in the refurbishment process of older buildings is technically, financially and socially challenging. This research explores the expectations and experiences of commercial office building tenants, whose building was under-going green refurbishment. Methodology Semi-structured in-depth interviews with seven residents and neighbours of a large case-study building under-going green refurbishment in Melbourne, Australia. Built in 1979, the 7,008m² ‘B’ grade building consists of 11 upper levels of office accommodation, ground floor retail, and a basement area leased as a licensed restaurant. After refurbishment, which included the installation of chilled water pumps, solar water heating, waterless urinals, insulation, disabled toilets, and automatic dimming lights, it was expected that the environmental performance of the building would move from a non-existent zero ABGR (Australian Building Greenhouse Rating) star rating to 3.5 stars, with a 40% reduction in water consumption and 20% reduction in energy consumption. Interviews were transcribed, with responses analysed using a thematic approach, identifying categories, themes and patterns. Results Commercial property tenants are on a journey to sustainability - they are interested and willing to engage in discussions about sustainability initiatives, but the process, costs and benefits need to be clear. Critically, whilst sustainability was an essential and non-negotiable criterion in building selection for government and larger corporate tenants, sustainability was not yet a core business value for smaller organisations – whilst they could see it as an emerging issue, they wanted detailed cost-benefit analyses, pay-back calculations of proposed technologies and, ideally, wished they could trial the technology first-hand in some way. Although extremely interested in learning more, most participants reported relatively minimal knowledge of specific sustainability features, designs or products. In discussions about different sustainable technologies (e.g., waterless urinals, green-rated carpets), participants frequently commented that they knew little about the technology, had not heard of it or were not sure exactly how it worked. Whilst participants viewed sustainable commercial buildings as the future, they had varied expectations about the fate of existing older buildings – most felt that they would have to be retrofitted at some point to meet market expectations and predicted the emergence of a ‘non-sustainability discount’ for residing in a building without sustainable features. Discussion This research offers a beginning point for understanding the difficulty of integrating green technology in older commercial buildings. Tenants currently have limited understandings of technology and potential building performance outcomes, which ultimately could impede the implementation of sustainable initiatives in older buildings. Whilst the commercial property market is interested in learning about sustainability in the built environment, the findings highlight the importance of developing a strong business case, communication and transition plan for implementing sustainability retrofits in existing commercial buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a simultaneous cold-forming and dual electric resistance welding process. It is commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. Experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with circular web openings reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses. Both welding and varying screw-fastening arrangements were used to attach these stiffeners to the web of LSBs. Finite element models of LSBs with stiffened web openings in shear were developed to simulate their shear behaviour and strength of LSBs. They were then validated by comparing the results with experimental test results and used in a detailed parametric study. These studies have shown that plate stiffeners were the most suitable, however, their use based on the current American standards was found to be inadequate. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses have been proposed for LSBs with web openings to restore their original shear capacity. This paper presents the details of the numerical study and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the relationships between knowledge and efficacy for teaching sustainability in a sample of 266 pre-service primary teachers at a large, metropolitan university in Australia. A survey gathered information about the participant’s attitudes and self-efficacy for education for sustainability, along with their perceived and actual knowledge of environmental sustainability issues. The participants typically believed they were confident in their abilities to engage with education for sustainability with self-efficacy increasing with increased levels of perceived knowledge. However no relationship was found between perceived knowledge and actual knowledge which suggests that the participants either do not feel constrained by their lack of knowledge, or are perhaps unaware of their actual knowledge of sustainability issues. This lack of relationship may have implications for the development of pedagogical content knowledge with pre-service teachers potentially developing shallow, tokenistic approaches to Education for Sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 nanofibers with different crystal phases have been discovered to be efficient catalysts for the transesterification of alcohols with dimethyl carbonate to produce corresponding methyl carbonates. Advantages of this catalytic system include excellent selectivity (>99%), general suitability to alcohols, reusability and ease of preparation and separation of fibrous catalysts. Activities of TiO2 catalysts were found to correlate with their crystal phases which results in different absorption abilities and activation energies on the catalyst surfaces. The kinetic isotope effect (KIE) investigation identified the rate-determining step, and the isotope labeling of oxygen-18 of benzyl alcohol clearly demonstrated the reaction pathway. Finally, the transesterification mechanism of alcohols with dimethyl carbonate catalyzed by TiO2 nanofibers was proposed, in which the alcohol released the proton to form benzyl alcoholic anion, and subsequently the anion attacks the carbonyl carbon of dimethyl carbonate to produce the target product of benzyl methyl carbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australia’s building stock includes many older commercial buildings with numerous factors that impact energy performance and indoor environment quality. The built environment industry has generally focused heavily on improving physical building design elements for greater energy efficiency (such as retrofits and environmental upgrades), however there are noticeable ‘upper limits’ to performance improvements in these areas. To achieve a stepchange improvement in building performance, the authors propose that additional components need to be addressed in a whole of building approach, including the way building design elements are managed and the level of stakeholder engagement between owners, tenants and building managers. This paper focuses on the opportunities provided by this whole-of-building approach, presenting the findings of a research project undertaken through the Sustainable Built Environment National Research Centre (SBEnrc) in Australia. Researchers worked with a number of industry partners over two years to investigate issues facing stakeholders at base building and tenancy levels, and the barriers to improving building performance. Through a mixed-method, industry-led research approach, five ‘nodes’ were identified in whole-of-building performance evaluation, each with interlinking and overlapping complexities that can influence performance. The nodes cover building management, occupant experience, indoor environment quality, agreements and culture, and design elements. This paper outlines the development and testing of these nodes and their interactions, and the resultant multi-nodal tool, called the ‘Performance Nexus’ tool. The tool is intended to be of most benefit in evaluating opportunities for performance improvement in the vast number of existing low-performing building stock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The main objective of the project was to explore the barriers and obstacles impeding a person-centred approach to planning and private housing for people with disability. Method Methodologically, the project involved explanation building using a multiple case study approach supported by a contextual study. It focussed initially on three organisations and their attempts to integrate innovative and what they regarded as person-centred models of housing into the private housing market for people with disability. It also included a fourth case highlighting the experiences of individuals with disability in accessing suitable and affordable housing. Results Using an ecological framework, the project found that: • Challenges exist within systems (such as the macro cultural, economic, regulatory systems through to local community, family and intra personal systems) as well as with interaction between systems • Reaching across systems is a key role for organisations and individuals but is very challenging with distance from the individual as well as from the policy/funding/service systems being a key aspect of the nature and extent by which they are challenged • In the case of housing for people with disability a ‘disability space’ is assumed and maintained disparately within each system and is separate from the ‘mainstream space’ with the established policy, legal, funding structures making it difficult to move between the two spaces. Conclusions Based on these findings, the project makes recommendations for government, community organisations, the housing industry, people with disability and their families and support networks, as well as for future research. An overarching recommendation is the need to address housing stock availability and suitability by adopting a mainstream approach rather than a disability-first/disability-specific approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential and commercial buildings as primary load bearing structural elements. They are often made of thin steel sheets and hence they are more susceptible to local buckling. The buckling behaviour of cold-formed steel compression members under fire conditions is not fully investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken to investigate the local buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. First a series of 91 local buckling tests was conducted at ambient and uniform elevated temperatures up to 700oC on cold-formed lipped and unlipped channels. Suitable finite element models were then developed to simulate the behaviour of tested columns and were validated using test results. All the ultimate load capacity results for local buckling were compared with the predictions from the available design rules based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Parts 1.2 and 1.3 and the direct strength method (DSM), based on which suitable recommendations have been made for the fire design of cold-formed steel compression members subject to local buckling at uniform elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Assessing hand injury is of great interest given the level of involvement of the hand with the environment. Knowing different assessment systems and their limitations generates new perspectives. The integration of digital systems (accelerometry and electromyography) as a tool to supplement functional assessment allows the clinician to know more about the motor component and its relation to movement. Therefore, the purpose of this study was the kinematic and electromyography analysis during functional hand movements. Method Ten subjects carried out six functional movements (terminal pinch, termino-lateral pinch, tripod pinch, power grip, extension grip and ball grip). Muscle activity (hand and forearm) was measured in real time using electromyograms, acquired with the Mega ME 6000, whilst acceleration was measured using the AcceleGlove. Results Electrical activity and acceleration variables were recorded simultaneously during the carrying out of the functional movements. The acceleration outcome variables were the modular vectors of each finger of the hand and the palm. In the electromyography, the main variables were normalized by the mean and by the maximum muscle activity of the thenar region, hypothenar, first interosseous dorsal, wrist flexors, carpal flexors and wrist extensors. Conclusions Knowing muscle behavior allows the clinician to take a more direct approach in the treatment. Based on the results, the tripod grip shows greater kinetic activity and the middle finger is the most relevant in this regard. Ball grip involves most muscle activity, with the thenar region playing a fundamental role in hand activity. Clinical relevance Relating muscle activation, movements, individual load and displacement offers the possibility to proceed with rehabilitation by individual component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efforts to reduce carbon emissions in the buildings sector have been focused on encouraging green design, construction and building operation; however, the business case is not very compelling if considering the energy cost savings alone. In recent years green building has been driven by a sense that it will improve the productivity of occupants,something with much greater economic returns than energy savings. Reducing energy demand in green commercial buildings in a way that encourages greater productivity is not yet well understood as it involves a set of complex and interdependent factors. This project investigates these factors and focuses on the performance of and interaction between: green design elements, internal environmental quality, occupant experience, tenant/leasing agreements, and building regulation and management. This paper suggests six areas of strategic research that are needed to understand how conditions can be created to support productivity in green buildings, and deliver significant energy consumption reductions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian housing sector contributes about a fifth of national greenhouse gas (GHG) emissions. GHG emissions contribute to climate change which leads to an increase in the occurrence or intensity of natural disasters and damage of houses. To ensure housing performance in the face of climate change, various rating tools for residential property have been introduced in different countries. The aim of this paper is to present a preliminary comparison between international and Australian rating tools in terms of purpose, use and sustainability elements for residential property. The methodologies used are to review, classify, compare and identify similarities and differences between rating tools. Two international tools, Building Research Establishment Environmental Assessment Methodology (BREEAM) (UK) and Leadership in Energy and Environmental Design for Homes (LEED-Homes) (USA), will be compared to two Australian tools, Green Star – Multi Unit Residential v1 and EnviroDevelopment. All four rating tools include management, energy, water and material aspects. The findings reveal thirteen elements that fall under three categories: spatial planning, occupants’ health and comfort, and environmental conditions. The variations in different tools may result from differences in local prevailing climate. Not all sustainability elements covered by international rating tools are included in the Australian rating tools. The voluntary nature of the tools implies they are not broadly applied in their respective market and that there is a policy implementation gap. A comprehensive rating tool could be developed in Australia to promote and lessen the confusion about sustainable housing, which in turn assist in improving the supply and demand of sustainable housing.