993 resultados para Process Error
Resumo:
Sarcosaprophagous macroinvertebrates (earthworms, termites and a number of Diptera larvae) enhance changes in the physical and chemical properties of organic matter during degradation and stabilization processes in composting, causing a decrease in the molecular weights of compounds. This activity makes these organisms excellent recyclers of organic matter. This article evaluates the succession of insects associated with the decomposition of solid urban waste separated at the source. The study was carried out in the city of Medellin, Colombia. A total of 11,732 individuals were determined, belonging to the classes Insecta and Arachnida. Species of three orders of Insecta were identified, Diptera, Coleoptera and Hymenoptera. Diptera corresponding to 98.5% of the total, was the most abundant and diverse group, with 16 families (Calliphoridae, Drosophilidae, Psychodidae, Fanniidae, Muscidae, Milichiidae, Ulidiidae, Scatopsidae, Sepsidae, Sphaeroceridae, Heleomyzidae, Stratiomyidae, Syrphidae, Phoridae, Tephritidae and Curtonotidae) followed by Coleoptera with five families (Carabidae, Staphylinidae, Ptiliidae, Hydrophilidae and Phalacaridae). Three stages were observed during the composting process, allowing species associated with each stage to be identified. Other species were also present throughout the whole process. In terms of number of species, Diptera was the most important group observed, particularly Ornidia obesa, considered a highly invasive species, and Hermetia illuscens, both reported as beneficial for decomposition of organic matter.
Resumo:
This paper argues that any specific utility or disutility for gamblingmust be excluded from expected utility because such a theory is consequentialwhile a pleasure or displeasure for gambling is a matter of process, notof consequences. A (dis)utility for gambling is modeled as a process utilitywhich monotonically combines with expected utility restricted to consequences.This allows for a process (dis)utility for gambling to be revealed. Asan illustration, the model shows how empirical observations in the Allaisparadox can reveal a process disutility of gambling. A more general modelof rational behavior combining processes and consequences is then proposedand discussed.
Resumo:
The examinations taken by high-school graduates in Spain and the role ofthe examination in the university admissions process are described. Thefollowing issues arising in the assessment of the process are discussed:reliability of grading, comparability of the grades and scores(equating),maintenance of standards, and compilation and use of the grading process,and their integration in the operational grading are proposed. Variousschemes for score adjustment are reviewed and feasibility of theirimplementation discussed. The advantages of pretesting of items and ofempirical checks of experts' judgements are pointed out. The paperconcludes with an outline of a planned reorganisation of the highereducation in Spain, and with a call for a comprehensive programme ofempirical research concurrent with the operation of the examination andscoring system.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical {\sc vc} dimension, empirical {\sc vc} entropy, andmargin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
This paper proposes a new time-domain test of a process being I(d), 0 < d = 1, under the null, against the alternative of being I(0) with deterministic components subject to structural breaks at known or unknown dates, with the goal of disentangling the existing identification issue between long-memory and structural breaks. Denoting by AB(t) the different types of structural breaks in the deterministic components of a time series considered by Perron (1989), the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios) of the estimated coefficient on yt-1 in an OLS regression of ?dyt on a simple transformation of the above-mentioned deterministic components and yt-1, possibly augmented by a suitable number of lags of ?dyt to account for serial correlation in the error terms. The case where d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF (Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample properties are analyzed, and two empirical applications are provided.
Resumo:
Summary points: - The bias introduced by random measurement error will be different depending on whether the error is in an exposure variable (risk factor) or outcome variable (disease) - Random measurement error in an exposure variable will bias the estimates of regression slope coefficients towards the null - Random measurement error in an outcome variable will instead increase the standard error of the estimates and widen the corresponding confidence intervals, making results less likely to be statistically significant - Increasing sample size will help minimise the impact of measurement error in an outcome variable but will only make estimates more precisely wrong when the error is in an exposure variable
Adapting the Process Writing Approach to English Language Learners with Special Needs: Using Visuals
Resumo:
The available literature on the writing characteristics and best practices to teach writing to English Language Learners who also present some disability is scarce. In order to understand and provide some insight on the developments in this field, I propose an adaptation of the Process Writing Approach based on a literature review of the existing bibliography about the writing characteristics of English Language Learners, Special Needs Learners, and English Language Learners with Special Needs’ writing, the effects of the Process Writing Approach in teaching writing to these groups, and the use of visuals in writing instruction. The main assumptions of this study are: a) The Process Writing Approach provides an opportunity to differentiate instruction to ELLs with special needs and gives them additional opportunities to bring their funds of knowledge to the classroom, improving their writing, and b) By allowing students to rely on visuals in different phases of the writing process teachers will be addressing the needs of both visual and verbal learners, therefore allowing students more options to develop writing skills. The main pedagogical implication is that by dividing writing in recursive stages and inserting visuals as scaffolding throughout the entire writing process, teachers will provide an alternative approach to writing instruction that may be more effective to English Language Learners with Special Needs.
Resumo:
Accomplish high quality of final products in pharmaceutical industry is a challenge that requires the control and supervision of all the manufacturing steps. This request created the necessity of developing fast and accurate analytical methods. Near infrared spectroscopy together with chemometrics, fulfill this growing demand. The high speed providing relevant information and the versatility of its application to different types of samples lead these combined techniques as one of the most appropriated. This study is focused on the development of a calibration model able to determine amounts of API from industrial granulates using NIR, chemometrics and process spectra methodology.
Resumo:
La sostenibilidad de los recursos marinos y de su ecosistema hace necesario un manejo responsable de las pesquerías. Conocer la distribución espacial del esfuerzo pesquero y en particular de las operaciones de pesca es indispensable para mejorar el monitoreo pesquero y el análisis de la vulnerabilidad de las especies frente a la pesca. Actualmente en la pesquería de anchoveta peruana, se recoge información del esfuerzo y capturas mediante un programa de observadores a bordo, pero esta solo representa una muestra de 2% del total de viajes pesqueros. Por otro lado, se dispone de información por cada hora (en promedio) de la posición de cada barco de la flota gracias al sistema de seguimiento satelital de las embarcaciones (VMS), aunque en estos no se señala cuándo ni dónde ocurrieron las calas. Las redes neuronales artificiales (ANN) podrían ser un método estadístico capaz de inferir esa información, entrenándose en una muestra para la cual sí conocemos las posiciones de calas (el 2% anteriormente referido), estableciendo relaciones analíticas entre las calas y ciertas características geométricas de las trayectorias observadas por el VMS y así, a partir de las últimas, identificar la posición de las operaciones de pesca. La aplicación de la red neuronal requiere un análisis previo que examine la sensibilidad de la red a variaciones en sus parámetros y bases de datos de entrenamiento, y que nos permita desarrollar criterios para definir la estructura de la red e interpretar sus resultados de manera adecuada. La problemática descrita en el párrafo anterior, aplicada específicamente a la anchoveta (Engraulis ringens) es detalllada en el primer capítulo, mientras que en el segundo se hace una revisión teórica de las redes neuronales. Luego se describe el proceso de construcción y pre-tratamiento de la base de datos, y definición de la estructura de la red previa al análisis de sensibilidad. A continuación se presentan los resultados para el análisis en los que obtenemos una estimación del 100% de calas, de las cuales aproximadamente 80% están correctamente ubicadas y 20% poseen un error de ubicación. Finalmente se discuten las fortalezas y debilidades de la técnica empleada, de métodos alternativos potenciales y de las perspectivas abiertas por este trabajo.
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.