Random measurement error and regression dilution bias.


Autoria(s): Hutcheon Jennifer A.; Chiolero Arnaud; Hanley James A.
Data(s)

2010

Resumo

Summary points: - The bias introduced by random measurement error will be different depending on whether the error is in an exposure variable (risk factor) or outcome variable (disease) - Random measurement error in an exposure variable will bias the estimates of regression slope coefficients towards the null - Random measurement error in an outcome variable will instead increase the standard error of the estimates and widen the corresponding confidence intervals, making results less likely to be statistically significant - Increasing sample size will help minimise the impact of measurement error in an outcome variable but will only make estimates more precisely wrong when the error is in an exposure variable

Identificador

https://serval.unil.ch/?id=serval:BIB_7DFB09EAC90A

isbn:1468-5833[electronic], 0959-535X[linking]

pmid:20573762

doi:10.1136/bmj.c2289

isiid:000279346400002

Idioma(s)

en

Direitos

info:eu-repo/semantics/openAccess

Fonte

BMJ, vol. 340, pp. c2289

Palavras-Chave #Bias (Epidemiology); Regression Analysis; Research; Risk Factors
Tipo

info:eu-repo/semantics/article

article