968 resultados para Point-set surface
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.
Resumo:
A number of parameters of biogeochemical interest were monitored along a north-southerly transect (S 43-S 63°) in the Atlantic Sector of the Southern Ocean from the 8th to the 20th of December 1997. Changes in total dissolved inorganic carbon (CT) and total alkalinity (AT) were mostly dependent on temperature and salinity until the ice edge was reached. After this point only a weak correlation was seen between these. Highest mean values of CT and AT were observed in the Winter Ice Edge (WIE) (2195 and 2319 µmol/kg, respectively). Lowest mean AT (2277 µmol/kg) was observed in the Sub-Antarctic Front (SAF), whereas lowest mean CT concentration (2068 µmol/kg) was associated with the Sub-Tropical Front (STF). The pH in situ varied between 8.060 and 8.156 where the highest values were observed in the southern part of the Antarctic Polar Front (APF) and in the Summer Ice Edge (SIE) Region . These peaks were associated with areas of high chlorophyll a (chl a) and tribromomethane values. In the other areas the pH in situ was mainly dependent on hydrography. Bacterial abundance decreased more than one order of magnitude when going from north to south. The decrease appeared to be strongly related to water temperature and there were no elevated abundances at frontal zones. Microphytoplankton dominated in the SAF and APF, whereas the nano- and picoplankton dominated outside these regions. Volatile halogenated compounds were found to vary both with regions, and with daylight. For the iodinated compounds, the highest concentrations were found north of the STF. Brominated hydrocarbons had high concentrations in the STF, but elevated concentrations were also found in the APF and SIE regions. No obvious correlation could be found between the occurrence of individual halocarbons and chl a. On some occasions trichloroethene and tribromomethane related to the presence of nano- and microplankton, respectively.
Resumo:
The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.