960 resultados para Photon Conversion
Resumo:
Energy conversion in solar cells incorporating ZnTeO base layers is presented. The ZnTeO base layers incorporate intermediate electronic states located approximately 0.4eV below the conduction band edge as a result of the substitution of O in Te sites in the ZnTe lattice. Cells with ZnTeO base layers demonstrate optical response at energies lower than the ZnTe bandedge, a feature that is absent in reference cells with ZnTe base layers. Quantum efficiency is significantly improved with the incorporation of ZnSe emitter/window layers and transition from growth on GaAs substrates to GaSb substrates with a near lattice match to ZnTe.
Resumo:
This paper describes the text normalization module of a text to speech fully-trainable conversion system and its application to number transcription. The main target is to generate a language independent text normalization module, based on data instead of on expert rules. This paper proposes a general architecture based on statistical machine translation techniques. This proposal is composed of three main modules: a tokenizer for splitting the text input into a token graph, a phrase-based translation module for token translation, and a post-processing module for removing some tokens. This architecture has been evaluated for number transcription in several languages: English, Spanish and Romanian. Number transcription is an important aspect in the text normalization problem.
Resumo:
The Empiric k·p Hamiltonian method is usually applied to nanostructured semiconductors. In this paper, it is applied to a homogeneous semiconductor in order to check the adequacy of the method. In this case, the solutions of the diagonalized Hamiltonian, as well as the envelope functions, are plane waves. The procedure is applied to the GaAs and the interband absorption coefficients are calculated. They result in reasonable agreement with the measured values, further supporting the adequacy of the Empiric k·p Hamiltonian method.
Resumo:
Pie de imp. consta en col
Resumo:
Pie de imp. consta en col
Resumo:
La ponencia presenta una comparación entre el rendimiento energético que se obtiene con un módulo fotovoltaico convencional, sin utilizar ningún medio para reducir la temperatura de sus células, y el rendimiento global que resulta si se incorpora a dicho módulo un intercambiador de calor en su parte trasera para reducir la temperatura de sus células y a la vez elevar la temperatura del agua proveniente de la red urbana de abastecimiento. El estudio muestra que el incremento de energia total que se logra mediante la solución propuesta supone una tasa de retorno con un plazo de amortización razonable para este tipo de instalaciones.
Resumo:
El trabajo que ha dado lugar a esta Tesis Doctoral se enmarca en la invesitagación en células solares de banda intermedia (IBSCs, por sus siglas en inglés). Se trata de un nuevo concepto de célula solar que ofrece la posibilidad de alcanzar altas eficiencias de conversión fotovoltaica. Hasta ahora, se han demostrado de manera experimental los fundamentos de operación de las IBSCs; sin embargo, esto tan sólo has sido posible en condicines de baja temperatura. El concepto de banda intermedia (IB, por sus siglas en inglés) exige que haya desacoplamiento térmico entre la IB y las bandas de valencia y conducción (VB and CB, respectivamente, por sus siglas en inglés). Los materiales de IB actuales presentan un acoplamiento térmico demasiado fuerte entre la IB y una de las otras dos bandas, lo cual impide el correcto funcionamiento de las IBSCs a temperatura ambiente. En el caso particular de las IBSCs fabricadas con puntos cuánticos (QDs, por sus siglas en inglés) de InAs/GaAs - a día de hoy, la tecnología de IBSC más estudiada - , se produce un rápido intercambio de portadores entre la IB y la CB, por dos motivos: (1) una banda prohibida estrecha (< 0.2 eV) entre la IB y la CB, E^, y (2) la existencia de niveles electrónicos entre ellas. El motivo (1) implica, a su vez, que la máxima eficiencia alcanzable en estos dispositivos es inferior al límite teórico de la IBSC ideal, en la cual E^ = 0.71 eV. En este contexto, nuestro trabajo se centra en el estudio de IBSCs de alto gap (o banda prohibida) fabricadsas con QDs, o lo que es lo mismo, QD-IBSCs de alto gap. Hemos fabricado e investigado experimentalmente los primeros prototipos de QD-IBSC en los que se utiliza AlGaAs o InGaP para albergar QDs de InAs. En ellos demostramos une distribución de gaps mejorada con respecto al caso de InAs/GaAs. En concreto, hemos medido valores de E^ mayores que 0.4 eV. En los prototipos de InAs/AlGaAs, este incremento de E^ viene acompaado de un incremento, en más de 100 meV, de la energía de activación del escape térmico. Además, nuestros dispositivos de InAs/AlGaAs demuestran conversión a la alza de tensión; es decir, la producción de una tensión de circuito abierto mayor que la energía de los fotones (dividida por la carga del electrón) de un haz monocromático incidente, así como la preservación del voltaje a temperaura ambiente bajo iluminación de luz blanca concentrada. Asimismo, analizamos el potencial para detección infrarroja de los materiales de IB. Presentamos un nuevo concepto de fotodetector de infrarrojos, basado en la IB, que hemos llamado: fotodetector de infrarrojos activado ópticamente (OTIP, por sus siglas en inglés). Nuestro novedoso dispositivo se basa en un nuevo pricipio físico que permite que la detección de luz infrarroja sea conmutable (ON y OFF) mediante iluminación externa. Hemos fabricado un OTIP basado en QDs de InAs/AlGaAs con el que demostramos fotodetección, bajo incidencia normal, en el rango 2-6/xm, activada ópticamente por un diodoe emisor de luz de 590 nm. El estudio teórico del mecanismo de detección asistido por la IB en el OTIP nos lleva a poner en cuestión la asunción de quasi-niveles de Fermi planos en la zona de carga del espacio de una célula solar. Apoyados por simuaciones a nivel de dispositivo, demostramos y explicamos por qué esta asunción no es válida en condiciones de corto-circuito e iluminación. También llevamos a cabo estudios experimentales en QD-IBSCs de InAs/AlGaAs con la finalidad de ampliar el conocimiento sobre algunos aspectos de estos dispositivos que no han sido tratados aun. En particular, analizamos el impacto que tiene el uso de capas de disminución de campo (FDLs, por sus siglas en inglés), demostrando su eficiencia para evitar el escape por túnel de portadores desde el QD al material anfitrión. Analizamos la relación existente entre el escape por túnel y la preservación del voltaje, y proponemos las medidas de eficiencia cuántica en función de la tensión como una herramienta útil para evaluar la limitación del voltaje relacionada con el túnel en QD-IBSCs. Además, realizamos medidas de luminiscencia en función de la temperatura en muestras de InAs/GaAs y verificamos que los resltados obtenidos están en coherencia con la separación de los quasi-niveles de Fermi de la IB y la CB a baja temperatura. Con objeto de contribuir a la capacidad de fabricación y caracterización del Instituto de Energía Solar de la Universidad Politécnica de Madrid (IES-UPM), hemos participado en la instalación y puesta en marcha de un reactor de epitaxia de haz molecular (MBE, por sus siglas en inglés) y el desarrollo de un equipo de caracterización de foto y electroluminiscencia. Utilizando dicho reactor MBE, hemos crecido, y posteriormente caracterizado, la primera QD-IBSC enteramente fabricada en el IES-UPM. ABSTRACT The constituent work of this Thesis is framed in the research on intermediate band solar cells (IBSCs). This concept offers the possibility of achieving devices with high photovoltaic-conversion efficiency. Up to now, the fundamentals of operation of IBSCs have been demonstrated experimentally; however, this has only been possible at low temperatures. The intermediate band (IB) concept demands thermal decoupling between the IB and the valence and conduction bands. Stateof- the-art IB materials exhibit a too strong thermal coupling between the IB and one of the other two bands, which prevents the proper operation of IBSCs at room temperature. In the particular case of InAs/GaAs quantum-dot (QD) IBSCs - as of today, the most widely studied IBSC technology - , there exist fast thermal carrier exchange between the IB and the conduction band (CB), for two reasons: (1) a narrow (< 0.2 eV) energy gap between the IB and the CB, EL, and (2) the existence of multiple electronic levels between them. Reason (1) also implies that maximum achievable efficiency is below the theoretical limit for the ideal IBSC, in which EL = 0.71 eV. In this context, our work focuses on the study of wide-bandgap QD-IBSCs. We have fabricated and experimentally investigated the first QD-IBSC prototypes in which AlGaAs or InGaP is the host material for the InAs QDs. We demonstrate an improved bandgap distribution, compared to the InAs/GaAs case, in our wide-bandgap devices. In particular, we have measured values of EL higher than 0.4 eV. In the case of the AlGaAs prototypes, the increase in EL comes with an increase of more than 100 meV of the activation energy of the thermal carrier escape. In addition, in our InAs/AlGaAs devices, we demonstrate voltage up-conversion; i. e., the production of an open-circuit voltage larger than the photon energy (divided by the electron charge) of the incident monochromatic beam, and the achievement of voltage preservation at room temperature under concentrated white-light illumination. We also analyze the potential of an IB material for infrared detection. We present a IB-based new concept of infrared photodetector that we have called the optically triggered infrared photodetector (OTIP). Our novel device is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. We have fabricated an OTIP based on InAs/AlGaAs QDs with which we demonstrate normal incidence photodetection in the 2-6 /xm range optically triggered by a 590 nm light-emitting diode. The theoretical study of the IB-assisted detection mechanism in the OTIP leads us to questioning the assumption of flat quasi-Fermi levels in the space-charge region of a solar cell. Based on device simulations, we prove and explain why this assumption is not valid under short-circuit and illumination conditions. We perform new experimental studies on InAs/GaAs QD-IBSC prototypes in order to gain knowledge on yet unexplored aspects of the performance of these devices. Specifically, we analyze the impact of the use of field-damping layers, and demonstrate this technique to be efficient for avoiding tunnel carrier escape from the QDs to the host material. We analyze the relationship between tunnel escape and voltage preservation, and propose voltage-dependent quantum efficiency measurements as an useful technique for assessing the tunneling-related limitation to the voltage preservation of QD-IBSC prototypes. Moreover, we perform temperature-dependent luminescence studies on InAs/GaAs samples and verify that the results are consistent with a split of the quasi-Fermi levels for the CB and the IB at low temperature. In order to contribute to the fabrication and characterization capabilities of the Solar Energy Institute of the Universidad Polite´cnica de Madrid (IES-UPM), we have participated in the installation and start-up of an molecular beam epitaxy (MBE) reactor and the development of a photo and electroluminescence characterization set-up. Using the MBE reactor, we have manufactured and characterized the first QD-IBSC fully fabricated at the IES-UPM.
Resumo:
The aim of this study was to determine the effect of animal management and farm facilities on total feed intake (TFI), feed conversion ratio (FCR) and mortality rate (MORT) of grower-finishing pigs. In total, 310 batches from 244 grower-finishing farms, consisting of 454 855 Pietrain sired pigs in six Spanish pig companies were used. Data collection consisted of a survey on management practices (season of placement, split-sex by pens, number of pig origins, water source in the farm, initial or final BW) and facilities (floor, feeder, ventilation or number of animals placed) during 2008 and 2009. Results indicated that batches of pigs placed between January and March had higher TFI (P=0.006), FCR (P=0.005) and MORT (P=0.03) than those placed between July and September. Moreover, batches of pigs placed between April and June had lower MORT (P=0.003) than those placed between January and March. Batches which had split-sex pens had lower TFI (P=0.001) and better FCR (P<0.001) than those with mixed-sex in pens; pigs fed with a single-space feeder with incorporated drinker also had the lowest TFI (P<0.001) and best FCR (P<0.001) in comparison to single and multi-space feeders without a drinker. Pigs placed in pens with <50% slatted floors presented an improvement in FCR (P<0.05) than pens with 50% or more slatted floors. Batches filled with pigs from multiple origins had higher MORT (P<0.001) than those from a single origin. Pigs housed in barns that performed manual ventilation control presented higher MORT (P<0.001) in comparison to automatic ventilation. The regression analysis also indicated that pigs which entered to grower-finisher facilities with higher initial BW had lower MORT (P<0.05) and finally pigs which were sent to slaughterhouse with a higher final BW presented higher TFI (P<0.001). The variables selected for each dependent variable explained 61.9%, 24.8% and 20.4% of the total variability for TFI, FCR and MORT, respectively. This study indicates that farms can increase growth performance and reduce mortality by improving farm facilities and/or modifying management practices.
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.
Resumo:
Sign. : [ ]8, B-E8
Resumo:
The ability to accurately observe the Earth's carbon cycles from space gives scientists an important tool to analyze climate change. Current space-borne Integrated-Path Differential Absorption (IPDA) Iidar concepts have the potential to meet this need. They are mainly based on the pulsed time-offlight principle, in which two high energy pulses of different wavelengths interrogate the atmosphere for its transmission properties and are backscattered by the ground. In this paper, feasibility study results of a Pseudo-Random Single Photon Counting (PRSPC) IPDA lidar are reported. The proposed approach replaces the high energy pulsed source (e.g. a solidstate laser), with a semiconductor laser in CW operation with a similar average power of a few Watts, benefiting from better efficiency and reliability. The auto-correlation property of Pseudo-Random Binary Sequence (PRBS) and temporal shifting of the codes can be utilized to transmit both wavelengths simultaneously, avoiding the beam misalignment problem experienced by pulsed techniques. The envelope signal to noise ratio has been analyzed, and various system parameters have been selected. By restricting the telescopes field-of-view, the dominant noise source of ambient light can be suppressed, and in addition with a low noise single photon counting detector, a retrieval precision of 1.5 ppm over 50 km along-track averaging could be attained. We also describe preliminary experimental results involving a negative feedback Indium Gallium Arsenide (InGaAs) single photon avalanche photodiode and a low power Distributed Feedback laser diode modulated with PRBS driven acoustic optical modulator. The results demonstrate that higher detector saturation count rates will be needed for use in future spacebourne missions but measurement linearity and precision should meet the stringent requirements set out by future Earthobserving missions.
Resumo:
Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.
Resumo:
A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, 1650K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable. (C) 2016 AIP Publishing LLC.
Resumo:
There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.
Resumo:
Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector. The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. Eliminating the series resistance is the key challenge for further improving the concentrator cells.