986 resultados para Peach, Sean
Resumo:
Se desarrolla la noción de razonamiento covariacional y se propone un marco conceptual para describir las acciones mentales involucradas al aplicar razonamiento covariacional cuando se interpretan y representan funciones asociadas a eventos dinámicos. Se reporta la habilidad para razonar sobre cantidades covariantes en situaciones dinámicas, de estudiantes de alto desempeño en un curso de cálculo. El estudio reveló que ellos eran capaces de construir imágenes de la variable dependiente de una función que cambia simultáneamente con el cambio imaginado de la variable independiente, y en algunas ocasiones eran capaces de construir imágenes de la razón de cambio para intervalos contiguos del dominio de una función. Sin embargo, al parecer, tuvieron dificultad para formar imágenes de una razón cambiante de manera continua y no pudieron representar con exactitud o interpretar los puntos de inflexión ni la razón creciente y decreciente para funciones asociadas a situaciones dinámicas. Estos hallazgos sugieren que el currículo y la instrucción deberían aumentar el énfasis en el cambio que debe darse en los alumnos de una imagen coordinada de dos variables que cambian simultáneamente a una imagen coordinada de razón de cambio instantánea con cambios continuos en la variable independiente para funciones asociadas a situaciones dinámicas.
Resumo:
Desde hace unos años, he detectado que los estudiantes presentan dificultades en las conversiones entre unidades de medida. La primera dificultad se presenta, en el hecho, de que ellos, cuando están frente a un problema de estos, un gran número no realizan los planteamientos pertinentes, pues el primer interrogante, es el tipo de operación que deben aplicar, sin hacer el análisis correspondiente; la segunda, es la memorización de una operación, puesto que en la mayoría de las situaciones aplican el método tradicional, multiplicar o dividir, de acuerdo al orden de la conversión y a la información que han recibido, y en ocasiones obtiene resultados erráticos, que el estudiante los percibe como correctos o coherentes; la tercera es la equivalencia entre las unidades de medida, más que todo entre los múltiplos y submúltiplos de las unidades básicas, aparentemente no parece un problema importante, pero en el momento de realizar la conversión, es donde se detecta la incidencia de este error; la cuarta, es la falta de comprensión de los resultados, es decir, para ellos en ocasiones es normal, que ciertas respuestas sean normales, sin tener en cuenta su coherencia, por ejemplo, determinar que 35cm sea igual a 35 metros, o 3500 metros, etc.; la quinta, es el olvido de las transformaciones entre unidades de medida de forma rápida, ya que, al cabo de cierto tiempo, cuando es tema es necesitado en una clase, el estudiante no lo recuerda con la solidez que el docente desea. Estos motivos nos impulsan a interrogarnos, ¿qué hacer, para tratar de superar estas dificultades en los estudiantes de secundaria y universitarios?
Resumo:
Este estándar recomienda que los estudiantes formulen preguntas que puedan ser resueltas usando la recolección de datos y su interpretación. Los estudiantes podrán aprender a coleccionar datos, organizar sus propios datos o los de los demás, y disponerlos en gráficas y diagramas que sean útiles para responder preguntas. Los conceptos básicos de probabilidad se pueden manejar de mano de los conceptos estadísticos.
Resumo:
En el anterior artículo prometimos una segunda parte dedicada al tratamiento del juego “Salto de la Rana” en la clase. Nos toca, pues, hablar de estrategias, notaciones, desarrollos, soluciones y ampliaciones o variantes del mismo. Empezaremos por indicar algunas referencias bibliográficas más, todas ellas interesantes, y de las que hemos sacado la mayor parte de la información que hemos reunido en este artículo. Recomendamos que sean leídos, al menos aquellos más asequibles y de manera particular los de Fayos y Gracia, Corbalán, Shell Center, Cobo y Ferrero.
Resumo:
El objetivo de este trabajo de investigación es identificar las organizaciones praxeológicas que permiten la articulación de la noción de función afín con otras nociones tanto en el contexto matemático como extramatemático en la Educación Media en Brasil. Los análisis se apoyan en la Teoría Antropológica de lo didáctico de Chevallard (2001) y los enfoques teóricos en términos de marcos definidos por Douady (1992) y niveles de conocimiento que se esperan de los estudiantes según la definición de Robert (1997). Tres libros de texto que fueron analizados darán una visión general de las relaciones institucionales que sobreviven actualmente en Brasil. Observamos la existencia de diferentes formas de articulación que dependen de las técnicas desarrolladas, necesitando la atención de profesores que deben proponer el mayor número posible de situaciones para que sus estudiantes puedan aplicar la noción de función afín en diferentes tareas, sean ellas escolares o no.
Resumo:
Esta ponencia muestra las producciones de alumnos del Colegio Proyección Siglo XXI de Osorno – Chile, relativas a la creación de publicidad con diferentes propósitos y utilizando contenidos matemático de su elección. Estas actividades han sido plantadas a los estudiantes con el propósito de que sean capaces de visualizar la aplicación de la matemática en diferentes contextos. Como resultado de la experiencia, se ha logrado que los alumnos que tienen desarrolladas otras habilidades, las apliquen y se destacan entre sus pares.
Resumo:
Se reporta un estudio de casos realizado con estudiantes de 16-17 años en relación con sus concepciones sobre la gráfica de una función lineal de dominio discreto. En este estudio detectamos que los alumnos presentan dificultades en concebir la gráfica de una función cuando su dominio no es el conjunto de los números reales pues no consideran como gráficas de funciones a aquellas que sean un conjunto de “puntos” y que no formen una “línea continua”.
Resumo:
Interesa a este estudio detectar modos de razonamiento matemático propiciados en los alumnos desde las prácticas docentes de los profesores. Se pretende hacer un estudio de casos en donde se identifiquen estos razonamientos. Algunas de las preguntas guía de este estudio son: ¿Qué relación hay entre los propósitos de la asignatura con el perfil de egreso de la educación media superior? ¿De que manera influye la formación del profesor en su práctica docente y que modos de razonamiento desarrolla dentro de esta? ¿Qué es lo que busca el profesor en la bibliografía y qué fuentes consulta y dónde las consulta? ¿Cuál es la dinámica ambiental dentro del aula? ¿qué tipo de actitudes se generan en el aula? ¿se favorecen sujetos críticos y reflexivos, con la posibilidad de expresarse y de preguntarse? ¿Qué tipo de actitudes muestran los alumnos? bajo la perspectiva de los modos de pensamiento analizados por Sierpinska, quien maneja los modos geométrico–sintético, analíticoaritmético y analítico-estructural. Frente a los altos índices de reprobación de los alumnos de Bachillerato General en la asignatura de Álgebra, surge el desafío para los docentes de reemplazar la memorización por una comprensión más profunda. Lo que se pretende es que las matemáticas sean, para el estudiante, herramientas funcionales y flexibles que le permitan resolver las situaciones problemáticas que se le planteen, en diversos ámbitos. A la perspectiva técnica se opone la perspectiva práctica, a los dos puntos de vistas mencionados se agrega un nuevo enfoque: estratégico, donde las actividades educativas están históricamente localizadas, las cuales tienen un lugar, sobre un trasfondo socio histórico y proyectan una visión de la clase de futuro que deseamos construir.
Resumo:
Uno de los desafíos esenciales de la enseñanza de las matemáticas consiste en la utilización de métodos y medios de enseñanza que propicien en los alumnos la formación de un conocimiento científico. Se asume como referente teórico los métodos del conocimiento científico de las ciencias pedagógicas, teniendo en cuenta que cuando el conocimiento que se quiere formar es científico, tiene que crear una actividad cognoscitiva nueva, lo que hace que la enseñanza y los medios de enseñanza que utilicemos sean diferentes, particularmente por el lenguaje que tiene la matemática, que ha de ser el lenguaje científico donde, además del habitual, se da el simbólico. El objetivo del trabajo es fundamentar la utilización de las calculadoras gráficas como un medio muy importante y actual para lograr formar en los alumnos un conocimiento científico de las matemáticas, y precisar que no basta con la enseñanza expositiva para que el estudiante se forme un conocimiento científico, pues la actitud científica hay que formarla, educarla en los estudiantes. Se caracterizan los niveles del conocimiento científico de las matemáticas, el empírico y el teórico y se precisa que ambos niveles se distinguen por los métodos de enseñanza y aprendizaje, donde el empírico emplea métodos que permiten describir los hechos, y es por eso que para este nivel se recomienda la visualización con la utilización de las calculadoras gráficas, y el nivel teórico utiliza métodos para distinguir las esencias, por ejemplo el hipotético-deductivo, el lógico histórico, la ascensión de lo abstracto a lo concreto pensado, etc. El trabajo aporta como resultado los principios para la utilización de las calculadoras gráficas en las clases de matemáticas en aras de formar un conocimiento científico en la enseñanza de esta materia.
Resumo:
La justificación de la presencia de la matemática en la educación secundaria puede darse a partir de perspectivas internas o externas a ella. El artículo pone de manifiesto que en las clases de matemáticas se da un cierto desequilibrio hacia los argumentos internos, lo que dificulta el acercamiento a las matemáticas de buena parte del alumnado y puede obstaculizar la adquisición de la competencia básica en la materia. En el artículo se apuesta por equilibrar la balanza acentuando una visión social y práctica de las matemáticas a partir de la introducción en el aula de contextos y situaciones donde sean necesarias.
Resumo:
En este trabajo se ofrece una visión general de la geometría fractal y sus aplicaciones. Se hace un análisis de sus posibilidades didácticas mediante una recopilación, síntesis y adaptación de sus principales conceptos, de forma que sean adsequibles a los alumnos de secundaria. Consta de dos partes, este primer artículo se dedica fundamentalmente al concepto de fractal, su dimensión y la generación de algunos tipos de fractales, a través de actividades pensadas especialmente para los alumnos de esa etapa.
Resumo:
Por qué compramos un periódico y no otro? ¿Cuál es la razón de que veamos más esta cadena de televisión que la otra? ¿Y por qué tenemos presintonizadas algunas emisoras de radio? Seguro que todos tenemos alguna respuesta a esas preguntas, aunque lo más fácil es que sean gené- ricas en la mayoría de los casos y en bastantes tengan que ver con algu- na opción política. Pero puede ser que nuestros alumnos y alumnas ten- gan unas opciones «heredadas» de la familia (hasta que toman posesión del mando a distancia al menos) o no sean capaces de cuantificarlas de ninguna manera.
Resumo:
Las fórmulas que empleamos para calcular el área de una superficie geométrica se basan en las medidas de longitudes de esas figuras, con el peligro de que se considere la superficie como una magnitud derivada de la longitud. Pero además estas fórmulas para el calculo de áreas dependen de la forma geométrica que se ha elegida como unidad de superficie: el cuadrado. Aunque esta elección es adecuada desde un punto de vista practico, si queremos formar mentes que sean capaces de resolver problemas mas generales y comprender el concepto de superficie sin reducir su calculo a la mera aplicación de una fórmula, debemos indicar Opciones alternativas y una de ellas puede ser relativizar la elección de la unidad de medida. En este artículo hemos tomado como unidad de superficie un triangulo equilátero de lado unidad con el cual hemos revisado y mostrado la relatividad del proceso de cálculo de superficies áreas de figuras planos.
Resumo:
La realización de trabajos de investigación es uno de los métodos de enseñanza que más se resisten a entrar en las clases de matemáticas. El que sean los estudiantes los que tomen decisiones y determinen el camino de su trabajo plantea muchas incógnitas.
Resumo:
This paper presents a framework to integrate requirements management and design knowledge reuse. The research approach begins with a literature review in design reuse and requirements management to identify appropriate methods within each domain. A framework is proposed based on the identified requirements. The framework is then demonstrated using a case study example: vacuum pump design. Requirements are presented as a component of the integrated design knowledge framework. The proposed framework enables the application of requirements management as a dynamic process, including capture, analysis and recording of requirements. It takes account of the evolving requirements and the dynamic nature of the interaction between requirements and product structure through the various stages of product development.