997 resultados para Particle Image Velocimetry –mittaustekniikka
Resumo:
Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.
Resumo:
The semiconductor particle detectors used at CERN experiments are exposed to radiation. Under radiation, the formation of lattice defects is unavoidable. The defects affect the depletion voltage and leakage current of the detectors, and hence affect on the signal-to-noise ratio of the detectors. This shortens the operational lifetime of the detectors. For this reason, the understanding of the formation and the effects of radiation induced defects is crucial for the development of radiation hard detectors. In this work, I have studied the effects of radiation induced defects-mostly vacancy related defects-with a simulation package, Silvaco. Thus, this work essentially concerns the effects of radiation induced defects, and native defects, on leakage currents in particle detectors. Impurity donor atom-vacancy complexes have been proved to cause insignificant increase of leakage current compared with the trivacancy and divacancy-oxygen centres. Native defects and divacancies have proven to cause some of the leakage current, which is relatively small compared with trivacancy and divacancy-oxygen.
Resumo:
As malformações cardíacas são as mais freqüentes anomalias congênitas ao nascimento, entretanto, a sua detecção pré-natal pela ultra-sonografia convencional permanece baixa. As ultra-sonografias de terceira e quarta dimensões surgiram no início da década de 90, apresentando grandes aplicações em obstetrícia, principalmente nos casos de diagnósticos duvidosos à ultra-sonografia bidimensional. O spatio-temporal image correlation (STIC) representa grande avanço na área de ultra-som de quarta dimensão; constitui-se em um software acoplado ao aparelho Voluson 730 Expert, que permite a aquisição volumétrica do coração fetal e suas conexões vasculares. As análises volumétricas são realizadas nos modos multiplanar e de renderização, podendo-se também utilizar o Doppler. Apresenta, como grandes vantagens, a aquisição rápida e a possibilidade de análise posterior por especialistas em ecocardiografia fetal. Pode ser aplicada para a pesquisa de quaisquer cardiopatias congênitas, pois permite a aquisição de qualquer plano, diferentemente do ultra-som bidimensional. Sua principal desvantagem está relacionada aos movimentos fetais. A maior difusão do método pode permitir um aumento na detecção de malformações cardíacas, pois possibilita ao ultra-sonografista geral encaminhar, via Internet, os volumes para a análise por especialistas em ecocardiografia fetal.
Resumo:
The aim of this article was to study the effect of virtual-reality exposure to situations that are emotionally significant for patients with eating disorders (ED) on the stability of body-image distortion and body-image dissatisfaction. A total of 85 ED patients and 108 non-ED students were randomly exposed to four experimental virtual environments: a kitchen with low-calorie food, a kitchen with high-calorie food, a restaurant with low-calorie food, and a restaurant with high-calorie food. In the interval between the presentation of each situation, body-image distortion and body-image dissatisfaction were assessed. Several 2 x 2 x 2 repeated measures analyses of variance (high-calorie vs. low-calorie food x presence vs. absence of people x ED group vs. control group) showed that ED participants had significantly higher levels of body-image distortion and body dissatisfaction after eating high-calorie food than after eating low-calorie food, while control participants reported a similar body image in all situations. The results suggest that body-image distortion and body-image dissatisfaction show both trait and state features. On the one hand, ED patients show a general predisposition to overestimate their body size and to feel more dissatisfied with their body image than controls. On the other hand, these body-image disturbances fluctuate when participants are exposed to virtual situations that are emotionally relevant for them.
Resumo:
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.
Resumo:
The tourism image is an element that conditions the competitiveness of tourism destinations by making them stand out in the minds of tourists. In this context, marketers of tourism destinations endeavour to create an induced image based on their identity and distinctive characteristics.A number of authors have also recognized the complexity of tourism destinations and the need for coordination and cooperation among all tourism agents, in order to supply a satisfactory tourist product and be competitive in the tourism market. Therefore, tourism agents at the destination need to develop and integrate strategic marketing plans.The aim of this paper is to determine how cities of similar cultures use their resources with the purpose of developing a distinctive induced tourism image to attract tourists and the extent of coordination and cooperation among the various tourism agents of a destination in the process of induced image creation.In order to accomplish these aims, a comparative analysis of the induced image of two cultural cities is presented, Girona (Spain) and Perpignan (France). The induced image is assessed through the content analysis of promotional brochures and the extent of cooperation with in-depth interviews of the main tourism agents of these destinations.Despite the similarities of both cities in terms of tourism resources, results show the use of different attributes to configure the induced image of each destination, as well as a different configuration of the network of tourism agents that participate in the process of induced image creation