918 resultados para Paleoenvironmental and paleodietary reconstruction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: Many rectal cancer patients undergo abdominoperineal excision worldwide every year. Various procedures to restore perineal (pseudo-) continence, referred to as total anorectal reconstruction, have been proposed. The best technique, however, has not yet been defined. In this study, the different reconstruction techniques with regard to morbidity, functional outcome and quality of life were analysed. Technical and timing issues (i.e. whether the definitive procedure should be performed synchronously or be delayed), oncological safety, economical aspects as well as possible future improvements are further discussed. METHODS: A MEDLINE and EMBASE search was conducted to identify the pertinent multilingual literature between 1989 and 2013. All publications meeting the defined inclusion/exclusion criteria were eligible for analysis. RESULTS: Dynamic graciloplasty, artificial bowel sphincter, circular smooth muscle cuff or gluteoplasty result in median resting and squeezing neo-anal pressures that equate to the measurements found in incontinent patients. However, quality of life was generally stated to be good by patients who had undergone the procedures, despite imperfect continence, faecal evacuation problems and a considerable associated morbidity. Many patients developed an alternative perception for the urge to defecate that decisively improved functional outcome. Theoretical calculations suggested cost-effectiveness of total anorectal reconstruction compared well to life with a permanent colostomy. CONCLUSIONS: Many patients would be highly motivated to have their abdominal replaced by a functional perineal colostomy. Given the considerable morbidity and questionable functional outcome of current reconstruction technique improvements are required. Tissue engineering might be an option to design an anatomically and physiologically matured, and customised continence organ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variations of the surface structure and composition of the Au(110) electrode during the formation/lifting of the surface reconstruction and during the surface oxidation/reduction in 0.1 M aqueous sulfuric acid were studied by cyclic voltammetry, scanning tunneling microscopy and shell-isolated nanoparticle enhanced Raman spectroscopy. Annealing of the Au(110) electrode leads to a thermally-induced reconstruction formed by intermixed (1×3) and (1×2) phases. In a 0.1 M H2SO4 solution, the decrease of the potential of the atomically smooth Au(110)-(1×1) surface leads to the formation of a range of structures with increasing surface corrugation. The electrochemical oxidation of the Au(110) surface starts by the formation of anisotropic atomic rows of gold oxide. At higher potentials we observed a disordered structure of the surface gold oxide, similar to the one found for the Au(111) surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On Au(111) electrodes, the investigation of ClO4− adsorption is hampered by a simultaneous surface reconstruction. We demonstrate that these two processes can be decoupled in cyclic voltammograms by a proper choice of the scan rate and of the initial potential. Our approach allowed the establishment of a relation between potentials of zero charge for the reconstructed and unreconstructed Au(111) surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at √s = 7–8 TeV in 2011–2012, focusing mainly on data collected in 2012. Measurements of the reconstruction efficiency and of the momentum scale and resolution, based on large reference samples of J/ψ → μμ, Z → μμ and ϒ → μμ decays, are presented and compared to Monte Carlo simulations. Corrections to the simulation, to be used in physics analysis, are provided. Over most of the covered phase space (muon |η| < 2.7 and 5 ≲ pT ≲ 100 GeV) the efficiency is above 99% and is measured with per-mille precision. The momentum resolution ranges from 1.7% at central rapidity and for transverse momentum pT ≅ 10 GeV, to 4% at large rapidity and pT ≅ 100 GeV. The momentum scale is known with an uncertainty of 0.05% to 0.2% depending on rapidity. A method for the recovery of final state radiation from the muons is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a study of the performance of the muon reconstruction in the analysis of proton–proton collisions at √s = 7TeV at theLHC, recorded by the ATLAS detector in 2010. This performance is described in terms of reconstruction and isolation efficiencies and momentum resolutions for different classes of reconstructed muons. The results are obtained from an analysis of J/ψ meson and Z boson decays to dimuons, reconstructed from a data sample corresponding to an integrated luminosity of 40 pb−1. The measured performance is compared to Monte Carlo predictions and deviations from the predicted performance are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton–proton collision data collected in 2011 at √s = 7 TeV and corresponding to an integrated luminosity of 4.7 fb−1. Tag-and-probe methods using events with leptonic decays of W and Z bosons and J/ψ mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.