952 resultados para PLANT PROTEIN-SOURCES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were conducted to investigate physiological mechanisms of solid matrix priming (SMP) on germination enhancement of loblolly pine (Pinus taeda) seeds. During SMP, osmotic potential in the embryo decreased by 0.65 MPa, concentration of crystalloid proteins decreased to 62% and concentrations of buffer soluble proteins and free amino acids increased by 22% and by 166%, respectively. Observations under an electron microscope demonstrated protein bodies in the embryo were mobilized. Inhibitor analysis indicated thiol protease was the dominant enzyme among endopiptidases to degrade the reserved proteins. A fragment of thiol protease was cloned from the primed seed embryos and it has high identities to those thiol proteases responsive to water stress. RNA get blot analysis showed a 1.5 kb thiol protease gene was up-regulated by SMP. Treatment with E64, a thiol protease inhibitor, negated SMP effects on germination performance, water potentials and protein profiles. Based on the experimental results, reserve protein mobilization induced by SMP in the embryo before radicle emergence might be one of the mechanisms to enhance germination in loblolly pine seeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 160 samples of 20 Australian-sourced feed ingredients of plant origin for pigs and poultry was analysed for total phosphorus and phytate-phosphorus contents and endogenous phytase activity. The majority of total P was present as phytate-phosphorus, and these concentrations were significantly correlated in 9 feed ingredients. The endogenous phytase activity in tested feed ingredients was negligible other than for wheat, its by-products and barley. Phytate-phosphorus was determined by a standard 'ferric chloride precipitation' method, which was satisfactory for individual feed ingredients, with the exception of lupins and faba beans. It appears that phytate is more difficult to extract from these two feedstuffs, possibly because of the affinity of phytate for protein. Ferric chloride precipitation methods are not suitable for phytate-phosphorus determinations of complete feed samples containing other sources of phosphorus, which is a distinct limitation. A lesser limitation is that these methods cannot distinguish between the various esters of myo-inositol phosphate present. Given the variation of phytate contents within ingredients, particularly wheat, the desirability of determining dietary substrate levels is emphasised to take full advantage of including exogenous phytases in pig and poultry diets to reduce phosphorus excretion and abate phosphorus pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by H-1 NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A deficiency (VAD) and chronic diseases are serious problems in the Federated States of Micronesia and other Pacific island countries. Nutrition education programs to address these in Micronesia have had limited success, partly due to lack of information on nutrient content in local foods. The study objective was to identify local plant foods rich in provitamin A and other carotenoids that have high levels of cultural acceptability. Food cultivars likely to be carotenoid-rich (suggested by coloration) were identified using an ethnographic approach including key informant interviews. Raw and cooked samples (mostly cultivars previously not analyzed) of 12 banana, 13 giant swamp taro, 10 breadfruit cultivars and four other local foods were analyzed by high-performance liquid chromatography. Many banana and taro cultivars were found with significant levels of beta- and alpha-carotene; the beta-carotene levels ranged from 30 to 2780 mug/100 g (banana) and. 50 to 2040 mug/100 g (taro). The results highlight the potential significance of cultivar differences in human nutrition, important for evaluation of the diet, establishment of locally relevant dietary guidelines, and research on the relationship between diet, health, and disease. These highly acceptable food cultivars could play an important role in VAD and chronic disease prevention programs in the Pacific. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyclotides are a family of head-to-tail cyclized peptides that display exceptionally high stability and a range of biological activities. Acyclic permutants that contain a break in the circular backbone have been reported to be devoid of the haemolytic activity of the prototypic cyclotide kalata B1, but the potential role of the charges at the introduced termini in this loss of membraneolytic activity has not been fully determined. In this study, acyclic permutants of kalata B1 with capped N- and G termini were synthesized and found to adopt a native fold. These variants were observed to cause no measurable lysis of erythrocytes, strengthening the connection between backbone cyclization and haemolytic activity. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of Golgi-localised molecules was recently described in animals and fungi possessing extensive coiled regions and a short (similar to40 residues) conserved C-terminal domain, called the GRIP domain, which is responsible for their location to this organelle. Using the model plant Arabidopsis thaliana, we identified a gene (AtGRIP) encoding a putative GRIP protein. We demonstrated that the C-terminal domain from AtGRIP functions as a Golgi-targeting sequence in plant cells. Localisation studies in living cells expressing the AtGRIP fused to a DsRed2 fluorescent probe, showed extensive co-location with the Golgi marker alpha-mannosidase I in transformed tobacco protoplasts. GRIP-like sequences were also found in genomic databases of rice, maize, wheat and alfalfa, suggesting that this domain may be a useful Golgi marker for immunolocalisation studies. Despite low sequence identity amongst GRIP domains, the plant GRIP sequence was able to target to the Golgi of mammalian cells. Taken together, these data indicate that GRIP domain proteins might be implicated in a targeting mechanism that is conserved amongst eukaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.