982 resultados para P450-catalyzed Hydroxylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM), i. e., the quantification of serum or plasma concentrations of medications for dose optimization, has proven a valuable tool for the patient-matched psychopharmacotherapy. Uncertain drug adherence, suboptimal tolerability, non-response at therapeutic doses, or pharmacokinetic drug-drug interactions are typical situations when measurement of medication concentrations is helpful. Patient populations that may predominantly benefit from TDM in psychiatry are children, pregnant women, elderly patients, individuals with intelligence disabilities, forensic patients, patients with known or suspected genetically determined pharmacokinetic abnormalities or individuals with pharmacokinetically relevant comorbidities. However, the potential benefits of TDM for optimization of pharmacotherapy can only be obtained if the method is adequately integrated into the clinical treatment process. To promote an appropriate use of TDM, the TDM expert group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued guidelines for TDM in psychiatry in 2004. Since then, knowledge has advanced significantly, and new psychopharmacologic agents have been introduced that are also candidates for TDM. Therefore the TDM consensus guidelines were updated and extended to 128 neuropsychiatric drugs. 4 levels of recommendation for using TDM were defined ranging from "strongly recommended" to "potentially useful". Evidence-based "therapeutic reference ranges" and "dose related reference ranges" were elaborated after an extensive literature search and a structured internal review process. A "laboratory alert level" was introduced, i. e., a plasma level at or above which the laboratory should immediately inform the treating physician. Supportive information such as cytochrome P450 substrate and inhibitor properties of medications, normal ranges of ratios of concentrations of drug metabolite to parent drug and recommendations for the interpretative services are given. Recommendations when to combine TDM with pharmacogenetic tests are also provided. Following the guidelines will help to improve the outcomes of psychopharmacotherapy of many patients especially in case of pharmacokinetic problems. Thereby, one should never forget that TDM is an interdisciplinary task that sometimes requires the respectful discussion of apparently discrepant data so that, ultimately, the patient can profit from such a joint eff ort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several cancer treatments are shifting from traditional, time-limited, nonspecific cytotoxic chemotherapy cycles to continuous oral treatment with specific protein-targeted therapies. In this line, imatinib mesylate, a selective tyrosine kinases inhibitor (TKI), has excellent efficacy in the treatment of chronic myeloid leukemia. It has opened the way to the development of additional TKIs against chronic myeloid leukemia, including nilotinib and dasatinib. TKIs are prescribed for prolonged periods, often in patients with comorbidities. Therefore, they are regularly co-administered along with treatments at risk of drug-drug interactions. This aspect has been partially addressed so far, calling for a comprehensive review of the published data. We review here the available evidence and pharmacologic mechanisms of interactions between imatinib, dasatinib, and nilotinib and widely prescribed co-medications, including known inhibitors or inducers of cytochromes P450 or drug transporters. Information is mostly available for imatinib mesylate, well introduced in clinical practice. Several pharmacokinetic aspects yet remain insufficiently investigated for these drugs. Regular updates will be mandatory and so is the prospective reporting of unexpected clinical observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differences in efficacy and safety of drugs among patients are a recognized problem in pharmacotherapy. The reasons are multifactorial and, therefore, the choice of a drug and its dosage for a particular patient based on different clinical and genetic factors is suggested to improve the clinical outcome. Four drugs are currently used for the treatment of Alzheimer's disease: three acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) and the N-methyl-D-aspartate-antagonist memantine. For these drugs, a high interindividual variability in plasma levels was observed, which might influence the response to treatment. The main objective of this thesis was to provide a better understanding of clinical and genetic factors affecting the plasma levels of antidementia drugs. Furthermore, the relationship between plasma levels, genetic variations and side effects was assessed. For this purpose, a pharmacogenetic study was conducted including 300 patients from a naturalistic clinical setting. Analytical methods for the simultaneous measurement of antidementia drugs in plasma have been developed and validated using liquid chromatography methods coupled with mass spectrometry detection. Presently, these methods are used in the therapeutic drug monitoring service of our laboratory. The routine use of therapeutic drug monitoring for antidementia drugs cannot yet be recommended with the available data, but it may be beneficial for some patients in special clinical cases such as insufficient treatment response, side effects or drug interactions. Donepezil and galantamine are extensively metabolized by the liver enzymes cytochromes P450 (CYP) 2D6 and 3A and are substrates of the drug transporter P-glycoprotein. The relationship of variations in genes affecting the activity of these metabolic enzymes and drug transporter (CYP2D6, CYP3A, POR, NR1I2, ABCB1) with donepezil and galantamine plasma levels was investigated. The CYP2D6 genotype appeared to be the major genetic factor involved in the pharmacokinetics of these two drugs. Thus, CYP2D6 poor metabolizers demonstrated significantly higher drug plasma levels than extensive metabolizers. Additionally, in the donepezil study population, the frequency of side effects was significantly increased in poor metabolizers. Lower donepezil plasma levels were observed in ultra rapid metabolizers, which might expose those patients to the risk of non-response. Memantine is mainly eliminated unchanged by the kidney, with implication of tubular secretion by renal transporters. A population pharmacokinetic model was developed to quantify the effects of clinical factors and genetic variations in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1), and nuclear receptors (NR1I2, NR1I3, PPARG) involved in transporter expression, on memantine plasma levels. In addition to the renal function and gender, a genetic variation in the nuclear receptor Pregnane-X-Receptor (NR1I2) significantly affected memantine elimination. These findings suggest that an individualized therapy approach for antidementia drugs, taking into account clinical characteristics and genetic background of a patient, might increase efficacy and safety of the treatment. - Les différences interindividuelles dans l'efficacité et la tolérance des médicaments sont un problème connu en pharmacothérapie. Les raisons sont multiples, et le choix du médicament et de la dose, basé sur des facteurs cliniques et génétiques spécifiques au patient, peut contribuer à améliorer la réponse clinique. Quatre médicaments sont couramment utilisés dans le traitement de la maladie d'Alzheimer : trois inhibiteurs de l'acétylcholinestérase (donépézil, galantamine, rivastigmine) et un antagoniste du récepteur N-méthyl-D-aspartate, la mémantine. Une forte variabilité interindividuelle dans les taux plasmatiques de ces quatre composés a été observée, ce qui pourrait influencer la réponse au traitement. L'objectif principal de ce travail de thèse est de mieux comprendre les facteurs cliniques et génétiques influençant les taux des médicaments pro-cognitifs. En outre, des associations entre les taux, la variabilité génétique et les effets secondaires ont été recherchées. Dans ce but, 300 patients sous traitement avec un médicament pro-cognitif ont été recrutés pour une étude pharmacogénétique. Des méthodes de dosage simultané de médicaments pro-cognitifs par chromatographie liquide couplée à la spectrométrie de masse ont été développées et validées. Ces méthodes sont actuellement utilisées dans le service de suivi thérapeutique de notre unité. Malgré le fait qu'un suivi des taux sanguins des pro-cognitifs ne puisse pas encore être recommandé en routine, un dosage peut être utile dans des cas cliniques spécifiques, comme une réponse insuffisante, une intolérance ou une interaction médicamenteuse. Le donépézil et la galantamine sont fortement métabolisés par les cytochromes P450 (CYP) 2D6 et 3A, et sont également substrats du transporteur P-glycoprotéine. Les associations entre les polymorphismes génétiques de ces enzymes, cofacteur, récepteur nucléaire et transporteur (CYP2D6, CYP3A, POR, NR1I2, ABCB1) et les taux de donépézil et de galantamine ont été étudiées. Le génotype du CYP2D6 a été montré comme le facteur génétique majeur impliqué dans la pharmacocinétique de ces deux médicaments. Ainsi, les métaboliseurs déficients du CYP2D6 ont démontré des taux plasmatiques significativement plus élevés comparé aux bons métaboliseurs. De plus, dans la population traitée avec le donépézil, la fréquence des effets secondaires était plus élevée chez les métaboliseurs déficients. Des taux plasmatiques bas ont été mesurés chez les métaboliseurs ultra-rapides traités avec le donépézil, ce qui pourrait être un facteur de risque à une non-réponse au traitement. La mémantine est principalement éliminée sous forme inchangée par les reins, et partiellement par sécrétion tubulaire grâce à des transporteurs rénaux. Un modèle de cinétique de population a été développé pour quantifier les effets des différents facteurs cliniques et de la variabilité génétique des transporteurs rénaux (SLC22A1/2/5, SLC47A1, ABCB1) et des récepteurs nucléaires (NR1I2, NR1I3, PPARG, impliqués dans l'expression des transporteurs) sur les taux plasmatiques de mémantine. En plus de la fonction rénale et du genre, une variation génétique dans le récepteur nucléaire Pregnane-X-Receptor (NR1I2) a montré une influence significative sur l'élimination de la mémantine. Ces résultats suggèrent qu'une approche thérapeutique individualisée, prenant en compte des facteurs cliniques et génétiques du patient, pourrait améliorer l'efficacité et la sécurité du traitement pro-cognitif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all antibiotics, including methicillin, making FemAB a potential target to restore beta-lactam susceptibility in methicillin-resistant S. aureus (MRSA). Cis-complementation with wild type femAB only restores synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains low. This study characterizes the adaptations that ensured survival of the cells after femAB inactivation. RESULTS: In addition to slow growth, the cis-complemented femAB mutant showed temperature sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number of transporters for sugars, glycerol, and glycine betaine, some of which could serve as osmoprotectants, were upregulated. Striking differences were found in the transcription of several genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP production. In addition, microarray data indicated enhanced expression of virulence factors that correlated with premature expression of the global regulators sae, sarA, and agr. CONCLUSION: Survival under conditions preventing normal cell wall formation triggered complex adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with other antibiotics to prevent selection of resistant survivors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive resource of expert-curated biochemical reactions. Rhea provides a non-redundant set of chemical transformations for use in a broad spectrum of applications, including metabolic network reconstruction and pathway inference. Rhea includes enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list), transport reactions and spontaneously occurring reactions. Rhea reactions are described using chemical species from the Chemical Entities of Biological Interest ontology (ChEBI) and are stoichiometrically balanced for mass and charge. They are extensively manually curated with links to source literature and other public resources on metabolism including enzyme and pathway databases. This cross-referencing facilitates the mapping and reconciliation of common reactions and compounds between distinct resources, which is a common first step in the reconstruction of genome scale metabolic networks and models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant"s virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3C4) negativity were clearly observed when the virtual hand was threatened as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM), i. e., the quantification of serum or plasma concentrations of medications for dose optimization, has proven a valuable tool for the patient-matched psychopharmacotherapy. Uncertain drug adherence, suboptimal tolerability, non-response at therapeutic doses, or pharmacokinetic drug-drug interactions are typical situations when measurement of medication concentrations is helpful. Patient populations that may predominantly benefit from TDM in psychiatry are children, pregnant women, elderly patients, individuals with intelligence disabilities, forensic patients, patients with known or suspected genetically determined pharmacokinetic abnormalities or individuals with pharmacokinetically relevant comorbidities. However, the potential benefits of TDM for optimization of pharmacotherapy can only be obtained if the method is adequately integrated into the clinical treatment process. To promote an appropriate use of TDM, the TDM expert group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued guidelines for TDM in psychiatry in 2004. Since then, knowledge has advanced significantly, and new psychopharmacologic agents have been introduced that are also candidates for TDM. Therefore the TDM consensus guidelines were updated and extended to 128 neuropsychiatric drugs. 4 levels of recommendation for using TDM were defined ranging from "strongly recommended" to "potentially useful". Evidence-based "therapeutic reference ranges" and "dose related reference ranges" were elaborated after an extensive literature search and a structured internal review process. A "laboratory alert level" was introduced, i. e., a plasma level at or above which the laboratory should immediately inform the treating physician. Supportive information such as cytochrome P450 substrate- and inhibitor properties of medications, normal ranges of ratios of concentrations of drug metabolite to parent drug and recommendations for the interpretative services are given. Recommendations when to combine TDM with pharmacogenetic tests are also provided. Following the guidelines will help to improve the outcomes of psychopharmacotherapy of many patients especially in case of pharmacokinetic problems. Thereby, one should never forget that TDM is an interdisciplinary task that sometimes requires the respectful discussion of apparently discrepant data so that, ultimately, the patient can profit from such a joint effort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we offer an overview of the compared quantitative importance of biotransformation reactions in the metabolism of drugs and other xenobiotics, based on a meta-analysis of current research interests. Also, we assess the relative significance the enzyme (super)families or categories catalysing these reactions. We put the facts unveiled by the analysis into a drug discovery context and draw some implications. The results confirm the primary role of cytochrome P450-catalysed oxidations and UDP-glucuronosyl-catalysed glucuronidations, but they also document the marked significance of several other reactions. Thus, there is a need for several drug discovery scientists to better grasp the variety of drug metabolism reactions and enzymes and their consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic peptides and peptoids were prepared using the thiolene Michael-type reaction. The linear precursors were provided with additional functional groups allowing for subsequent conjugation: an orthogonally protected thiol, a protected maleimide, or an alkyne. The functional group for conjugation was placed either within the cycle or in an external position. The click reactions employed for conjugation with suitably derivatized nucleoside or oligonucleotides were either cycloadditions (Diels-Alder, Cu(I)-catalyzed azide-alkyne) or the same Michael-type reaction as for cyclization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tandemly repeated insertion sequence IS21, located on a suicide plasmid, promoted replicon fusion with bacteriophage lambda in vitro in the presence of ATP. This reaction was catalyzed in a cell extract containing the 45-kDa IstA protein (cointegrase) and the 30-kDa IstB helper protein of IS21 after both proteins had been overproduced in Escherichia coli. Without IstB, replicon fusion was inefficient and did not produce the 4-bp target duplications typical of IS21.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME - FRANÇAISRésuméDans ce travail de thèse, l'importance de la pharmacogénétique des traitements antiviraux a été évaluée en déterminant, au moyen de trois différentes approches, l'impact de variations génétiques sur la pharmacocinétique de deux traitements antirétroviraux (à savoir l'efavirenz et le lopinavir) ainsi que sur la capacité de pouvoir éliminer le virus de l'hépatite C de façon naturelle ou suite à un traitement médicamenteux.L'influence des variations génétiques sur les taux plasmatiques de l'efavirenz et de ses métabolites primaires a été évaluée par l'analyse d'un seul gène candidat : le cytochrome P450 (CYP) 2A6, impliqué dans une voie métabolique accessoire de l'efavirenz. Cette étude a permis de démontrer que le génotype du CYP2A6 devient cliniquement déterminant en l'absence de fonction du CYP2B6, impliqué dans la voie métabolique principale, et que la perte simultanée des voies métaboliques principales et accessoires entraine une augmen¬tation du risque d'interruption du traitement, soulignant la valeur prédictive du génotypage.L'influence de la génétique sur la clairance du lopinavir a été évaluée par l'analyse à grande échelle de gènes candidats, à savoir les gènes potentiellement impliqués dans l'absorption, le métabolisme, la distribution et l'élimination d'un médicament. Cette étude a permis l'identification de 4 polymorphismes, dans des transporteurs et des enzymes métaboliques, associés à la clairance du lopinavir et expliquant 5% de la variabilité inter¬individuelle de ce phénotype.L'influence de la génétique sur la capacité d'éliminer le virus de l'hépatite C, de façon naturelle ou à la suite d'un traitement, a été évaluée par l'analyse du génome entier. Cette étude a permis l'identification d'un polymorphisme situé à proximité de l'interféron-X3. Quatre variations génétiques potentiellement causales ont ensuite pu être identifiées par reséquencage. Finalement, la contribution nette de ce gène sur l'élimination du virus a pu être évaluée dans une cohorte infectée par une seule et même source, permettant ainsi de contrôler l'effet de la diversité virale, du genre et de la présence de co-infections.Cette thèse a permis de mettre en évidence les diverses méthodes disponibles pour la recherche en pharmacogénétique, ainsi que l'importance du reséquencage pour l'identification de variations génétiques causales.SUMMARY - ENGLISHSummaryIn this thesis work the relevance of pharmacogenetics of antiviral treatment has been assessed by investigating, through three different approaches, the impact of host genetic variation on antiretroviral drug disposition (namely efavirenz and lopinavir) and on natural or treatment-induced clearance of hepatitis C virus.The influence of host genetic variation on efavirenz and its primary metabolite plasma levels was assessed by single candidate gene approach, through comprehensive analysis of cytochrome P450 (CYP) 2A6 - involved in efavirenz accessory metabolic pathway. The study could demonstrate that CYP2A6 genotype became increasingly relevant in the setting of limited CYP2B6 function - involved in efavirenz main metabolic pathway - and that individuals with both main and accessory metabolic pathways impaired were at higher risk for treatment discontinuation, overall emphasizing the predictive power of genotyping.The influence of host genetic variation on lopinavir clearance was assessed by large scale candidate gene approach, through analysis of genes involved in the absorption, distribution, metabolism and elimination. The study identified four genetic variants in drug transporters and metabolizing enzymes that explained 5% of the interindividual variability in lopinavir clearance.The influence of host genetic variation on hepatitis C virus (HCV) natural or treatment- induced clearance was assessed through genome-wide association study approach. This study identified an intergenic polymorphism, part of a linkage disequilibrium block encompassing the interferon-3 gene, as highly associated with treatment-induced and spontaneous HCV clearance. Resequencing and recombinant mapping lead to the identification of four potentially causal genetic variants. Finally, we could assess the net contribution of genetic variants in interferon-3 to clearance by controlling for viral diversity, gender and co-infection status in a single source infected cohort.This thesis highlights the various genetic tools available to pharmacogenetic discovery (candidate gene, pathway or and genome-wide approaches), and the importance of resequencing for mapping of causal variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new approach and related indicators for globally distributed software support and development based on a 3-year process improvement project in a globally distributed engineering company. The company develops, delivers and supports a complex software system with tailored hardware components and unique end-customer installations. By applying the domain knowledge from operations management on lead time reduction and its multiple benefits to process performance, the workflows of globally distributed software development and multitier support processes were measured and monitored throughout the company. The results show that the global end-to-end process visibility and centrally managed reporting at all levels of the organization catalyzed a change process toward significantly better performance. Due to the new performance indicators based on lead times and their variation with fixed control procedures, the case company was able to report faster bug-fixing cycle times, improved response times and generally better customer satisfaction in its global operations. In all, lead times to implement new features and to respond to customer issues and requests were reduced by 50%.