944 resultados para OXYGEN SPECIES PRODUCTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here. we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work evaluated the Modulation of reactive oxygen species (ROS) produced by the cisplatin-human DNA interaction in a cell-free experimental model by the carotenoids bixin and lycopene extracted from, natural dietary Sources and purified through luminol- and Cypridina luciferin methoxy-analogue (MCLA)- enhanced chemiluminescence assays. The results showed that the ROS generation by DNA-cisplatin interaction was inhibited by both lycopene and bixin in a concentration-dependent manner. At a concentration of 100 mu M, lycopene and bixin inhibited Superoxide anion (O center dot(2)) generation at 90% and 82%, respectively, and the total ROS generation at 44% and 42%, respectively. The formation of significant amounts of isomers or degradation products of both carotenoids was not observed after ROS scavenging, as evaluated by high-performance liquid chromatography. Taken together, these results Suggest that carotenoids can be helpful to Modulate the oxidative stress found in cancer therapy with cisplatin. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) contribute significantly to myocardial ischaemia-reperfusion (I-R) injury. Recently the combination of the antioxidants vitamin E (VE) and alpha-lipoic acid (alpha-LA) has been reported to improve cardiac performance and reduce myocardial lipid peroxidation during in vitro I-R. The purpose of these experiments was to investigate the effects of VE and alpha-LA supplementation on cardiac performance, incidence of dysrhythmias and biochemical alterations during an in vivo myocardial I-R insult. Female Sprague-Dawley rats (4-months old) were assigned to one of the two dietary treatments: (1) control diet (CON) or (2) VE and alpha-LA supplementation (ANTIOXID). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU VE kg(-1) diet. The ANTIOXID diet contained 10 000 IU VE kg(-1) diet and 1.65 g alpha-LA kg(-1) diet. After the 14-week feeding period, significant differences (P < 0.05) existed in mean myocardial VE levels between dietary groups. Animals in each experimental group were subjected to an in vivo I-R protocol which included 25 min of left anterior coronary artery occlusion followed by 10 min of reperfusion. No group differences (P > 0.05) existed in cardiac performance (e.g. peak arterial pressure or ventricular work) or the incidence of ventricular dysrhythmias during the I-R protocol. Following I-R, two markers of lipid peroxidation were lower (P < 0.05) in the ANTIOXID animals compared with CON. These data indicate that dietary supplementation of the antioxidants, VE and alpha-LA do not influence cardiac performance or the incidence of dysrhythmias but do decrease lipid peroxidation during in viva I-R in young adult rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of NFkB by the compound Bay 11–7082 (Bay) induces tolerogenic properties in dendritic cells (DC). While activation of NFkB can be induced by reactive oxygen species (ROS) and thiol/disulfide redox states, the consequences of NFkB blockade on ROS/redox state is not known. To generate immature DC, monocytes were cultured in GM-CSF and IL-4 (with or without Bay) for 48 h. Genes potentially involved in redox regulation were determined using microarray technology and validated using FACS, real-time PCR or western blotting. ROS were measured using two fluorescent dyes DHR-123 and DHE (to detect H2O2 or O2 respectively). We found increased expression of genes associated with reductants such as thioredoxin reductase (TrxR1) and glutathione (GSH), although those associated with the breakdown of H2O2 such as glutathione peroxidase, peroxiredoxins and catalase were decreased. Interestingly, Bay-treated DC produced less ROS in comparison to control DC under basal conditions and following stimulation with various pro-oxidants. In conclusion, Bay-treated DC display not only tolerogenic properties but also an intracellular reducing environment and an impaired ability to produce ROS. We are currently investigating whether exogenous ROS can interfere with the tolerogenic properties of Bay-treated DC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metabolic syndrome (MetS) phenotype is typically characterized by visceral obesity, insulin resistance, atherogenic dyslipidemia involving hypertriglyceridemia and subnormal levels of high density lipoprotein-cholesterol (HDL-C), oxidative stress and elevated cardiovascular risk. The potent antioxidative activity of small HDL3 is defective in MetS [Hansel B, et al. J Clin Endocrinol Metab 2004;89:4963-71]. We evaluated the functional capacity of small HDL3 particles from MetS subjects to protect endothelial cells from apoptosis induced by mildly oxidized low-density lipoprotein (oxLDL). MetS subjects presented an insulin-resistant obese phenotype, with hypertriglyceridemia, elevated apolipoprotein B and insulin levels, but subnormal HDL-C concentrations and chronic low grade inflammation (threefold elevation of C-reactive protein). When human microvascular endothelial cells (HMEC-1) were incubated with oxLDL (200 jig apolipoprotein B/ml) in the presence or absence of control HDL subfiractions (25 mu g protein/ml), small, dense HDL3b and 3c significantly inhibited cellular annexin V binding and intracellular generation of reactive oxygen species. The potent anti-apoptotic activity of small HDL3c particles was reduced (-35%; p < 0.05) in MetS subjects (n = 16) relative to normolipidemic controls (n = 7). The attenuated anti-apoptotic activity of HDL3c correlated with abdominal obesity, atherogenic dyslipidemia and systemic oxidative stress (p < 0.05), and was intimately associated with altered physicochemical properties of apolipoprotein A-I (apoA-I-poor HDL3c, involving core cholesteryl ester depletion and triglyceride enrichment. We conclude that in MetS, apoA-I-poor, small, dense HDL3c exert defective protection of endothelial cells from oxLDL-induced apoptosis, potentially reflecting functional anomalies intimately associated with abnormal neutral lipid core content. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cytochrome P450-dependent covalent binding of radiolabel derived fi om phenytoin (DPH) and its phenol and catechol metabolites, 5-(4'-hydroxyphenyl)-5-phenylhydantoin (HPPH) and 5-(3',4'-dihydroxyphenyl)-5-phenylhydantoin (CAT), was examined in liver microsomes. Radiolabeled HPPH and CAT and unlabeled CAT were obtained from microsomal incubations and isolated by preparative HPLC. NADPH-dependent covalent binding was demonstrated in incubations of human liver microsomes with HPPH. When CAT was used as substrate, covalent adduct formation was independent of NADPH, was enhanced in the presence of systems generating reactive oxygen species, and was diminished under anaerobic conditions or in the presence of cytoprotective reducing agents. Fluorographic analysis showed that radiolabel derived from DPH and HPPH was selectively associated with proteins migrating with approximate relative molecular weights of 57-59 kDa and at the dye front (molecular weights < 23 kDa) on denaturing gels. Lower levels of radiolabel were distributed throughout the molecular weight range. In contrast, little selectivity was seen in covalent adducts formed from CAT. HPPH was shown to be a mechanism-based inactivator of P450, supporting the contention that a cytochrome P450 is one target of covalent binding. These results suggest that covalent binding of radiolabel derived from DPH in rat and human Liver microsomes occurs via initial P450-dependent catechol formation followed by spontaneous oxidation to quinone and semiquinone derivatives that ultimately react with microsomal protein. Targets for covalent binding may include P450s, though the catechol appears to be sufficiently stable to migrate out of the P450 active site to form adducts with other proteins. In conclusion, we have demonstrated that DPH can be bioactivated in human liver to metabolites capable of covalently binding to proteins. The relationship of adduct formation to DPH-induced hypersensitivity reactions remains to be clarified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background & aims: There is scarce information about immune function and parenteral. fish oil (FO). The influence of a new parenteral. lipid emulsion (LE) containing fish oil (SMOF) was experimentally evaluated on neutrophils` chemotaxis and macrophages` phagocytosis. Methods: Adult mate Lewis rats (n = 40) were randomized into five groups; one non-surgical. control and four to receive parenteral LE or saline infusion through jugular vein catheterization: SMOF (mixture of 30% medium-chain triglycerides, 30% soybean, 25% olive and 15% fish oils); MCT/LCT (physical mixture of 50% medium-chain triglycerides and 50% soybean oil); MCT/LCT/FO (80% MCT/LCT supplemented with 20% FO) and SS (saline). In the 5th experimental day and after intravenous colloidal carbon injection, blood and tissue (liver, lung and spleen) samples were collected and immunological analyses were performed. Results: LE didn`t influence neutrophil chemotaxis. SMOF didn`t influence phagocytosis (p > 0.05) while MCT/LCT and MCT/LCT/FO LE increased the number of liver and lung resident macrophages that had engaged in phagocytosis compared with CO-NS and SS (p < 0.05). Only MCT/LCT/FO increased the number of spleen resident macrophages that had engaged in phagocytosis (p < 0.05). Conclusions: LE, independently of composition, had no influence on neutrophils` chemotaxis, but showed different effect on phagocytosis by macrophages. SMOF LE had neutral effect while fish oil LE enriched with MCT/LCT LE increased resident-macrophages` phagocytosis. (c) 2007 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological studies have provided evidence that high consumption of tomatoes effectively reduces the risk of reactive oxygen species (ROS)-mediated diseases such as cancer. Tomatoes are rich sources of lycopene, a potent singlet oxygen-quenching carotenoid. In addition to its antioxidant properties, lycopene shows an array of biological effects including antimutagenic and anticarcinogenic activities. In the present study, the chemopreventive action of lycopene was examined on DNA damage and clastogenic or aneugenic effects of H2O2 and n-nitrosodiethylamine (DEN) in the metabolically competent human hepatoma cell line (HepG2 cells). Lycopene at concentrations of 10. 25, and 50 mu M, was tested under three protocols: before, simultaneously, and after treatment with the mutagen, using the comet and micronucleus assays. Lycopene significantly reduced the genotoxicity and mutagenicity of H2O2 in all of the conditions tested. For DEN, significant reductions of primary DNA damage (comet assay) were detected when the carotenoid (all of the doses) was added in the cell culture medium before or simultaneously with the mutagen. In the micronucleus test, the protective effect of lycopene was observed only when added prior to DEN treatment. In conclusion, our results suggest that lycopene is a suitable agent for preventing chemically-induced DNA and chromosome damage. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Purpose-Plasma glutathione peroxidase (GPx-3) is a major antioxidant enzyme in plasma and the extracellular space that scavenges reactive oxygen species produced during normal metabolism or after oxidative insult. A deficiency of this enzyme increases extracellular oxidant stress, promotes platelet activation, and may promote oxidative posttranslational modification of fibrinogen. We recently identified a haplotype (H-2) in the GPx-3 gene promoter that increases the risk of arterial ischemic stroke among children and young adults. Methods-The aim of this study is to identify possible relationships between promoter haplotypes in the GPx-3 gene and cerebral venous thrombosis (CVT). We studied the GPx-3 gene promoter from 23 patients with CVT and 123 young controls (18 to 45 years) by single-stranded conformational polymorphism and sequencing analysis. Results-Over half of CVT patients (52.1%) were heterozygous (H1H2) or homozygous (H2H2) carriers of the H-2 haplotype compared with 12.2% of controls, yielding a more than 10-fold independent increase in the risk of CVT (OR=10.7; 95% CI, 2.70 to 42.36; P<0.0001). Among women, the interaction of the H2 haplotype with hormonal risk factors increased the OR of CVT to almost 70 (P<0.0001). Conclusions-These findings show that a novel GPx-3 promoter haplotype is a strong, independent risk factor for CVT. As we have previously shown that this haplotype is associated with a reduction in transcriptional activity, which compromises antioxidant activity and antithrombotic benefits of the enzyme, these results suggest that a deficiency of GPx-3 leads to a cerebral venous thrombophilic state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive oxygen species oxidize proteins and modulate the proteasomal system in muscle-wasting cancer cachexia. On day 5 (D5), day 10 (D10), and day 14 (D14) after tumor implantation, skeletal muscle was evaluated. Carbonylated proteins and thiobarbituric acid reactive substances were measured. Chemiluminescence was employed for lipid hydroperoxide estimation. Glutathione, superoxide dismutase, and total radical antioxidant capacity were evaluated. The proteasomal system was assessed by mRNA atrogin-1 expression. Increased muscle wasting, lipid hydroperoxide, and superoxide dismutase, and decreased glutathione levels and total radical antioxidant capacity, were found on D5 in accordance with increased mRNA atrogin-1 expression. All parameters were significantly modified in animals treated with alpha-tocopherol. The elevation in aldehylde levels and carbonylated proteins observed on D10 were reversed by cc-tocopherol treatment. Oxidative stress may trigger signal transduction of the proteasomal system and cause protein oxidation. These pathways may be associated with the mechanism of muscle wasting that occurs in cancer cachexia. Muscle Nerve 42: 950-958, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased amounts of reactive oxygen species (ROS) during in vitro fertilization (IVF) may cause cytotoxic damage to gametes, whereas small amounts of ROS favour sperm capacitation. The aim of this study was to investigate the effect of antioxidants [50 mu M beta-mercaptoethanol (beta-ME) and 50 mu M cysteamine (Cyst)] or a pro-oxidant (5 mm buthionine sulfoximine) on the quality and penetrability of spermatozoa into bovine oocytes and on the subsequent embryo development and quality when added during IVF. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes, and mitochondrial function, was diminished (p < 0.05) after 4-h culture in the presence of antioxidants. Oocyte penetration rates were similar between treatments (p > 0.05), but antioxidants adversely affected the normal pronuclear formation rates (p < 0.05). The incidence of polyspermy was high for beta-ME (p < 0.05). No differences were observed in cleavage rates between treatments (p > 0.05). However, the developmental rate to the blastocyst stage was adversely affected by Cyst treatment (p < 0.05). The quality of embryos that reached the blastocyst stage, evaluated by total, inner cell mass (ICM) and trophectoderm cell numbers and ICM/total cell ratio was unaffected (p > 0.05) by treatments. The results indicate that ROS play a role in the fertilizing capacity in bovine spermatozoa, as well as in the interaction between the spermatozoa and the oocytes. It can be concluded that supplementation with antioxidants during IVF procedures impairs sperm quality, normal pronuclear formation and embryo development to the blastocyst stage.