868 resultados para Nano-Powders


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace elements can have a significant effect on the processing and properties of aluminium alloys, including sintered alloys. As little as 0.07 wt% (100 ppm) lead, tin or indium promotes sintering in an Al-Zn-Mg-Cu alloy produced from mixed elemental powders. This is a liquid phase sintering system and thin liquid films form uniformly throughout the alloy in the presence of the trace elements, but liquid pools develop in their absence. Analytical transmission electron microscopy indicates that the trace elements are confined to the interparticle and grain boundary regions. The sintering enhancement is attributed to the segregation of the microalloying addition to the liquid-vapour interface. Because the microalloying elements have a low surface tension, they lower the effective surface tension of the liquid. This reduces the wetting angle and extends the spreading of the liquid through the matrix. An improvement in sintering results. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size,viscosity, surface tensions, and contact angle. The experimental drop penetration times were compared to existing theoretical predictions by M. Denesuk et al. (J. Colloid Interface Sci. 158, 114, 1993) and S. Middleman (Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, 1995) but did not agree. Loosely packed powder beds tend to have a heterogeneous bed structure containing large macrovoids which do not participate in liquid flow but are included implicitly in the existing approach to estimating powder pore size. A new two-phase model was proposed where the total volume of the macrovoids was assumed to be the difference between the bed porosity and the tap porosity. A new parameter, the effective porosity (epsilon)eff, was defined as the tap porosity multiplied by the fraction of pores that terminate at a macrovoid and are effectively blocked pores. The improved drop penetration model was much more successful at estimating the drop penetration time on all powders and the predicted times were generally within an order of magnitude of the experimental results. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a numerical study of fluidized-bed coating on thin plates using an orthogonal collocation technique. Inclusion of the latent heat of fusion term in the boundary conditions of the mathematical model accounts for the fact that some polymer powders used in coating may be partially crystalline. Predictions of coating thickness on flat plates were made with actual polymers used in fluidized-bed coating. Reasonably good agreement between numerical predictions of the coating thickness and experimental coating data of Richart was obtained for steel panels preheated to 316 degreesC. A good agreement was also obtained between numerical predictions and our coating thickness data for nylon-11 and polyethylene powders. Predicted coating thickness for polyethylene powder on flat plates were obtained with values of heat transfer coefficient closer to those obtained from our experiments. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic binders are used in premixes for powder metallurgy applications to prevent dusting and segregation. This is a particular problem for aluminium powder metallurgy because the dust is a potential safety hazard. The binder must also burn out completely at low temperatures in an inert environment and not react with the metal powders. It is demonstrated that cellulose acetate, polyvinyl acetate and polyvinyl alcohol are effective dedusting agents but they react with the metal powders during sintering and decrease the sintered density. Paraffin wan is an effect dedusting agent that provided die wall lubricity, does not interfere with sintering and increases tensile strength and ductility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho, as distribuições de tamanhos das partículas de dois pós de Carboneto de Silício foram previamente avaliadas e os resultados indicaram uma distribuição Gaussiana para ambos, com tamanhos médios na ordem de 2 μm para o primeiro e 6 μm para o segundo. Posteriormente foram misturados os dois pós originais com diferentes frações mássicas, proporcionando uma nova série de pós de Carboneto de Silício (SiC), que seriam usados nos ensaios de microabrasão com configuração de esfera fixa. A caracterização desta nova série de pós mostrou larguras maiores para aqueles com alto porcentagem do abrasivo pequeno (2,11 μm), conservando a aparência Gaussiana dos originais. Por outro lado para os pós com uma quantidade maior do abrasivo grande (6,57 μm), foram obtidas curvas com uma leve tendência bimodal, mas também apresentaram maiores larguras. As provas foram conduzidas sobre aço carbono AISI 1020, para duas condições diferentes de carga normal e os resultados foram analisados em termos da taxa de desgaste, bem como dos micromecanismos de desgaste (abrasão por rolamento ou abrasão por riscamento). Os resultados indicaram que a fração mássica dos pós originais tem um efeito significante sobre os micromecanismos de desgaste observados e que as taxas de desgaste não segue uma relação linear com a fração mássica do pó com maior tamanho da partícula abrasiva. Além disso, a análise da severidade de contato determinou que esta diminui durante os ensaios conduzidos com carga constante. Este fenômeno está associado ao aumento da área da cratera de desgaste que produz uma diminuição da pressão de contato. Assim, um incremento para o número de eventos associado ao rolamento de partículas seria esperado, favorecendo a observação de múltiplas indentações ao longo dos sulcos formados previamente. Isto foi confirmado por meio de micrografias eletrônicas de varredura das amostras após ensaios de microabrasão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that electrospun poly(vynilidene fluoride) nanofibers are fully poled right after preparation and show b-phase contents of 70%, therefore being able to be implemented into electroactive devices without further processing steps. Further,the local piezoelectric properties of individual electrospun fibers have been studied by piezoresponse force microscopy. Piezoelectric response, polarization switching, and nanoscale patterning of the fibers have been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(hydroxybutyrate) (PHB) obtained from sugar cane was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 ºC. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. On the other hand, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of ~2.0 m, but for electric fields higher than 1.5 kV.cm-1, a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53 % was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ/mol. Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water and electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 m width were achieved. After cross-linking with glutaraldehyde, -elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ~ 80 ºC. Moreover, -Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for oriented and random fibers mats in a PBS solution was 330 ± 10 kPa and 732 ± 165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. Themechanical properties aremainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. The mechanical properties are mainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of the electrical response of vapor grown carbon nanofiber (VGCNF) + epoxy composites is investigated by studying the electrical behavior of VGCNF with resin, VGCNF with hardener and cured composites, separately. It is demonstrated that the onset of the conductivity is associated to the emergence of a weak disorder regime. It is also shown that the weak disorder regime is related to a hopping depending on the physical properties of the polymer matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures.