919 resultados para Naive Bayes classifier
Resumo:
Recent advances in processor speeds, mobile communications and battery life have enabled computers to evolve from completely wired to completely mobile. In the most extreme case, all nodes are mobile and communication takes place at available opportunities – using both traditional communication infrastructure as well as the mobility of intermediate nodes. These are mobile opportunistic networks. Data communication in such networks is a difficult problem, because of the dynamic underlying topology, the scarcity of network resources and the lack of global information. Establishing end-to-end routes in such networks is usually not feasible. Instead a store-and-carry forwarding paradigm is better suited for such networks. This dissertation describes and analyzes algorithms for forwarding of messages in such networks. In order to design effective forwarding algorithms for mobile opportunistic networks, we start by first building an understanding of the set of all paths between nodes, which represent the available opportunities for any forwarding algorithm. Relying on real measurements, we enumerate paths between nodes and uncover what we refer to as the path explosion effect. The term path explosion refers to the fact that the number of paths between a randomly selected pair of nodes increases exponentially with time. We draw from the theory of epidemics to model and explain the path explosion effect. This is the first contribution of the thesis, and is a key observation that underlies subsequent results. Our second contribution is the study of forwarding algorithms. For this, we rely on trace driven simulations of different algorithms that span a range of design dimensions. We compare the performance (success rate and average delay) of these algorithms. We make the surprising observation that most algorithms we consider have roughly similar performance. We explain this result in light of the path explosion phenomenon. While the performance of most algorithms we studied was roughly the same, these algorithms differed in terms of cost. This prompted us to focus on designing algorithms with the explicit intent of reducing costs. For this, we cast the problem of forwarding as an optimal stopping problem. Our third main contribution is the design of strategies based on optimal stopping principles which we refer to as Delegation schemes. Our analysis shows that using a delegation scheme reduces cost over naive forwarding by a factor of O(√N), where N is the number of nodes in the network. We further validate this result on real traces, where the cost reduction observed is even greater. Our results so far include a key assumption, which is unbounded buffers on nodes. Next, we relax this assumption, so that the problem shifts to one of prioritization of messages for transmission and dropping. Our fourth contribution is the study of message prioritization schemes, combined with forwarding. Our main result is that one achieves higher performance by assigning higher priorities to young messages in the network. We again interpret this result in light of the path explosion effect.
Resumo:
Locating hands in sign language video is challenging due to a number of factors. Hand appearance varies widely across signers due to anthropometric variations and varying levels of signer proficiency. Video can be captured under varying illumination, camera resolutions, and levels of scene clutter, e.g., high-res video captured in a studio vs. low-res video gathered by a web cam in a user’s home. Moreover, the signers’ clothing varies, e.g., skin-toned clothing vs. contrasting clothing, short-sleeved vs. long-sleeved shirts, etc. In this work, the hand detection problem is addressed in an appearance matching framework. The Histogram of Oriented Gradient (HOG) based matching score function is reformulated to allow non-rigid alignment between pairs of images to account for hand shape variation. The resulting alignment score is used within a Support Vector Machine hand/not-hand classifier for hand detection. The new matching score function yields improved performance (in ROC area and hand detection rate) over the Vocabulary Guided Pyramid Match Kernel (VGPMK) and the traditional, rigid HOG distance on American Sign Language video gestured by expert signers. The proposed match score function is computationally less expensive (for training and testing), has fewer parameters and is less sensitive to parameter settings than VGPMK. The proposed detector works well on test sequences from an inexpert signer in a non-studio setting with cluttered background.
Resumo:
A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.
Resumo:
A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.
Resumo:
Efficient storage of types within a compiler is necessary to avoid large blowups in space during compilation. Recursive types in particular are important to consider, as naive representations of recursive types may be arbitrarily larger than necessary through unfolding. Hash-consing has been used to efficiently store non-recursive types. Deterministic finite automata techniques have been used to efficiently perform various operations on recursive types. We present a new system for storing recursive types combining hash-consing and deterministic finite automata techniques. The space requirements are linear in the number of distinct types. Both update and lookup operations take polynomial time and linear space and type equality can be checked in constant time once both types are in the system.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.
Resumo:
Nearest neighbor search is commonly employed in face recognition but it does not scale well to large dataset sizes. A strategy to combine rejection classifiers into a cascade for face identification is proposed in this paper. A rejection classifier for a pair of classes is defined to reject at least one of the classes with high confidence. These rejection classifiers are able to share discriminants in feature space and at the same time have high confidence in the rejection decision. In the face identification problem, it is possible that a pair of known individual faces are very dissimilar. It is very unlikely that both of them are close to an unknown face in the feature space. Hence, only one of them needs to be considered. Using a cascade structure of rejection classifiers, the scope of nearest neighbor search can be reduced significantly. Experiments on Face Recognition Grand Challenge (FRGC) version 1 data demonstrate that the proposed method achieves significant speed up and an accuracy comparable with the brute force Nearest Neighbor method. In addition, a graph cut based clustering technique is employed to demonstrate that the pairwise separability of these rejection classifiers is capable of semantic grouping.
Resumo:
We present a highly accurate method for classifying web pages based on link percentage, which is the percentage of text characters that are parts of links normalized by the number of all text characters on a web page. K-means clustering is used to create unique thresholds to differentiate index pages and article pages on individual web sites. Index pages contain mostly links to articles and other indices, while article pages contain mostly text. We also present a novel link grouping algorithm using agglomerative hierarchical clustering that groups links in the same spatial neighborhood together while preserving link structure. Grouping allows users with severe disabilities to use a scan-based mechanism to tab through a web page and select items. In experiments, we saw up to a 40-fold reduction in the number of commands needed to click on a link with a scan-based interface, which shows that we can vastly improve the rate of communication for users with disabilities. We used web page classification and link grouping to alter web page display on an accessible web browser that we developed to make a usable browsing interface for users with disabilities. Our classification method consistently outperformed a baseline classifier even when using minimal data to generate article and index clusters, and achieved classification accuracy of 94.0% on web sites with well-formed or slightly malformed HTML, compared with 80.1% accuracy for the baseline classifier.
Resumo:
In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.
Resumo:
A procedure that uses fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers to evaluate intrinsic and extrinsic speaker normalization methods is described. Each classifier is trained on preprocessed, or normalized, vowel tokens from about 30% of the speakers of the Peterson-Barney database, then tested on data from the remaining speakers. Intrinsic normalization methods included one nonscaled, four psychophysical scales (bark, bark with end-correction, mel, ERB), and three log scales, each tested on four different combinations of the fundamental (Fo) and the formants (F1 , F2, F3). For each scale and frequency combination, four extrinsic speaker adaptation schemes were tested: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). A total of 32 intrinsic and 128 extrinsic methods were thus compared. Fuzzy ARTMAP and K-NN showed similar trends, with K-NN performing somewhat better and fuzzy ARTMAP requiring about 1/10 as much memory. The optimal intrinsic normalization method was bark scale, or bark with end-correction, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods was LT, CSi, LS, and CS, with fuzzy AHTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.
Resumo:
Training data for supervised learning neural networks can be clustered such that the input/output pairs in each cluster are redundant. Redundant training data can adversely affect training time. In this paper we apply two clustering algorithms, ART2 -A and the Generalized Equality Classifier, to identify training data clusters and thus reduce the training data and training time. The approach is demonstrated for a high dimensional nonlinear continuous time mapping. The demonstration shows six-fold decrease in training time at little or no loss of accuracy in the handling of evaluation data.
Resumo:
The recognition of 3-D objects from sequences of their 2-D views is modeled by a family of self-organizing neural architectures, called VIEWNET, that use View Information Encoded With NETworks. VIEWNET incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a supervised incremental learning system that classifies the preprocessed representations into 2-D view categories whose outputs arc combined into 3-D invariant object categories, and a working memory that makes a 3-D object prediction by accumulating evidence from 3-D object category nodes as multiple 2-D views are experienced. The simplest VIEWNET achieves high recognition scores without the need to explicitly code the temporal order of 2-D views in working memory. Working memories are also discussed that save memory resources by implicitly coding temporal order in terms of the relative activity of 2-D view category nodes, rather than as explicit 2-D view transitions. Variants of the VIEWNET architecture may also be used for scene understanding by using a preprocessor and classifier that can determine both What objects are in a scene and Where they are located. The present VIEWNET preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, rotation, and dilation by use of a log-polar transform. The invariant spectra undergo Gaussian coarse coding to further reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the classifier, a supervised learning system based on the fuzzy ARTMAP algorithm. Fuzzy ARTMAP learns 2-D view categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive error. Evidence from sequence of 2-D view categories converges at 3-D object nodes that generate a response invariant under changes of 2-D view. These 3-D object nodes input to a working memory that accumulates evidence over time to improve object recognition. ln the simplest working memory, each occurrence (nonoccurrence) of a 2-D view category increases (decreases) the corresponding node's activity in working memory. The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean image using slow and fast learning. Slow learning at the fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the selected 2-D view category. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of l28x128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view and of up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with those of cells in monkey inferotemporal cortex.
Resumo:
Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.
Resumo:
A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.